Skip to main content

Estimating Frontal Body Landmarks from Thermal Sensors Using Residual Neural Networks

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13346))

Abstract

In this work, we propose the use of thermal vision sensors to estimate the frontal body landmarks of an inhabitant. The use of thermal sensors is being promoted to collect human patterns while protecting inhabitants’ privacy in smart environments. On the other hand, deep learning approaches have provided encouraging results in estimating body, hand and facial landmarks. Here, we present a residual neural network which produces body landmarks from images collected by a low cost thermal sensor. In order to solve the problems of capturing and labeling data, which hinder learning in deep learning models, we propose an auto-labeling approach with dual visible-spectrum and thermal cameras, including the recognition of keypoints by the OpenPose model. A case study developed with four inhabitants in different poses shows encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of Things (IoT) communication protocols. In: 2017 8th International Conference on Information Technology (ICIT), pp. 685–690. IEEE (2017)

    Google Scholar 

  2. Ali Hamad, R., Järpe, E., Lundström, J.: Stability analysis of the t-SNE algorithm for human activity pattern data. In: The 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2018) (2018)

    Google Scholar 

  3. Badave, H., Kuber, M.: Evaluation of person recognition accuracy based on openpose parameters. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 635–640. IEEE (2021)

    Google Scholar 

  4. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 172–186 (2019)

    Article  Google Scholar 

  5. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  6. Csurka, G.: Domain adaptation for visual applications: a comprehensive survey. arXiv preprint arXiv:1702.05374 (2017)

  7. Espinosa, Á.V., López, J.L.L., Mata, F.M., Estevez, M.E.E.: Application of IoT in healthcare: keys to implementation of the sustainable development goals. Sensors 21(7), 2330 (2021)

    Article  Google Scholar 

  8. Griffiths, E., Assana, S., Whitehouse, K.: Privacy-preserving image processing with binocular thermal cameras. Proc. ACM Interact. Mob. Wearab. Ubiquit. Technol. 1(4), 1–25 (2018)

    Article  Google Scholar 

  9. Han, J., Bhanu, B.: Human activity recognition in thermal infrared imagery. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005)-Workshops, pp. 17. IEEE (2005)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Hidalgo, G., Raaj, Y., Idrees, H., Xiang, D., Joo, H., Simon, T., Sheikh, Y.: Single-network whole-body pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6982–6991 (2019)

    Google Scholar 

  12. Hiriyannaiah, S., Akanksh, B.S., Koushik, A.S., Siddesh, G.M., Srinivasa, K.G.: Deep learning for multimedia data in IoT. In: Tanwar, S., Tyagi, S., Kumar, N. (eds.) Multimedia Big Data Computing for IoT Applications. ISRL, vol. 163, pp. 101–129. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8759-3_4

    Chapter  Google Scholar 

  13. Jais, I.K.M., Ismail, A.R., Nisa, S.Q.: Adam optimization algorithm for wide and deep neural network. Knowl. Eng. Data Sci. 2(1), 41–46 (2019)

    Article  Google Scholar 

  14. Jara-Quito, H.J., Guerrero-Vasquez, L.F., Parra-Luzuriaga, K.A., Ojeda-Sanchez, M.V., Bravo-Torres, J.F.: Avatar: human-computer interface for interaction with children using a live animation process based in facial and body landmarks recognition. In: 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 715–720. IEEE (2021)

    Google Scholar 

  15. Jin, S., et al.: Whole-body human pose estimation in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 196–214. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_12

    Chapter  Google Scholar 

  16. Kong, X., Meng, Z., Meng, L., Tomiyama, H.: A privacy protected fall detection IoT system for elderly persons using depth camera. In: 2018 International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 31–35. IEEE (2018)

    Google Scholar 

  17. Li, X., Liu, Y., Wang, Y., Yan, D.: Computing homography with RANSAC algorithm: a novel method of registration. In: Electronic Imaging and Multimedia Technology IV, vol. 5637, pp. 109–112. International Society for Optics and Photonics (2005)

    Google Scholar 

  18. López-Medina, M., Espinilla, M., Cleland, I., Nugent, C., Medina, J.: Fuzzy cloud-fog computing approach application for human activity recognition in smart homes. J. Intell. Fuzzy Syst. 38(1), 709–721 (2020)

    Article  Google Scholar 

  19. Martínez-González, A., Villamizar, M., Canévet, O., Odobez, J.M.: Efficient convolutional neural networks for depth-based multi-person pose estimation. IEEE Trans. Circuits Syst. Video Technol. 30(11), 4207–4221 (2019)

    Article  Google Scholar 

  20. Medina-Quero, J., Zhang, S., Nugent, C., Espinilla, M.: Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition. Expert Syst. Appl. 114, 441–453 (2018)

    Article  Google Scholar 

  21. Mohammadmoradi, H., Munir, S., Gnawali, O., Shelton, C.: Measuring people-flow through doorways using easy-to-install IR array sensors. In: 2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 35–43. IEEE (2017)

    Google Scholar 

  22. Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  23. Osokin, D.: Real-time 2D multi-person pose estimation on CPU: lightweight openpose. arXiv preprint arXiv:1811.12004 (2018)

  24. Patricia, N., Caputo, B.: Learning to learn, from transfer learning to domain adaptation: a unifying perspective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1442–1449 (2014)

    Google Scholar 

  25. Polo-Rodriguez, A., Cruciani, F., Nugent, C.D., Medina, J.: Domain adaptation of binary sensors in smart environments through activity alignment. IEEE Access 8, 228804–228817 (2020)

    Article  Google Scholar 

  26. Quero, J.M., Burns, M., Razzaq, M.A., Nugent, C., Espinilla, M.: Detection of falls from non-invasive thermal vision sensors using convolutional neural networks. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2, p. 1236 (2018)

    Google Scholar 

  27. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  28. Sixsmith, A., Johnson, N.: A smart sensor to detect the falls of the elderly. IEEE Perv. Comput. 3(2), 42–47 (2004)

    Article  Google Scholar 

  29. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    Google Scholar 

  30. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. In: Computational Intelligence and Neuroscience 2018 (2018)

    Google Scholar 

  31. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019)

    Article  Google Scholar 

  32. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  33. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  34. Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthcare Eng. 2017 (2017)

    Google Scholar 

Download references

Acknowledgements

This contribution has been supported by the Spanish Institute of Health ISCIII by means of the project DTS21-00047 and by the Spanish Ministry of Science throughout Project RTI2018-095993-B-I00 and by J. Andalucía through Project P18-RT-1193 and by the European Regional Development Fund (ERDF). Funding for this research is provided by EU Horizon 2020 Pharaon Project ‘Pilots for Healthy and Active Ageing’, Grant agreement no. 857188. Moreover, this research received funding under the REMIND project Marie Sklodowska-Curie EU Framework for Research and Innovation Horizon 2020, under grant agreement no. 734355..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Polo-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Polo-Rodríguez, A., Lupión, M., Ortigosa, P.M., Medina-Quero, J. (2022). Estimating Frontal Body Landmarks from Thermal Sensors Using Residual Neural Networks. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics