Skip to main content

Part of the book series: Artificial Intelligence-Enhanced Software and Systems Engineering ((AISSE,volume 3))

  • 228 Accesses

Abstract

This chapter describes a fuzzy cluster-scaled regression analysis and applications by using mobile health dataset. In the area of healthcare, attention is being paid to automatic measurement using sensors. However, such data are usually complex and large, and it is difficult to extract their latent features, such as capturing the difference in the kinds of physical human movement and the difference of subjects. The fuzzy cluster-scaled regression analysis is capable of obtaining the latent features by using the obtained clusters by clustering data and utilizes the clusters as scales for measuring differences over the kinds of physical human movement and the subjects. Numerical results are described to show better performances of the fuzzy cluster-scaled regression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Sato-Ilic, Knowledge-based comparable predicted values in regression analysis, in Procedia Computer Science, vol. 114, ed. by C.H. Dagli (Elsevier, 2017), pp. 216–223

    Google Scholar 

  2. M. Sato-Ilic, Cluster-scaled regression analysis for high-dimension and low-sample size data. Adv. Smart Syst. Res. 7(1), 1–10 (2018)

    Google Scholar 

  3. K. Altun, B. Barshan, Human activity recognition using inertial/magnetic sensor units, in ed. by A. A. Salah, T. Gevers, N. Sebe, A. Vinciarelli, HBU 2010, LNCS 6219, (Springer Berlin, Heidelberg, 2010), pp. 38–51

    Google Scholar 

  4. UCI machine learning repository. http://archive.ics.uci.edu/ml/index.html

  5. J.C. Bezdek, J.D. Harris, Fuzzy partitions and relations; an axiomatic basis for clustering. Fuzzy Sets Syst. 1, 111–127 (1978)

    Article  MathSciNet  Google Scholar 

  6. J.C. Bezdek, A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2. 1, 1–8 (1980)

    Google Scholar 

  7. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum Press, 1981)

    Book  Google Scholar 

  8. J.C. Bezdek, R.J Hathaway, M.J Sabin, W.T. Tucker, Convergence theory for fuzzy c-means: counterexamples and repairs. IEEE Trans. Syst. Man Cybern. SMC-17. 5, 873–877 (1987)

    Google Scholar 

  9. J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)

    Article  MathSciNet  Google Scholar 

  10. J.C. Dunn, A graph theoretic analysis of pattern classification via Tamura’s fuzzy relation. IEEE Trans. Syst. Man Cybern. SMC-4. 3, 310–313 (1974)

    Google Scholar 

  11. M. Sato-Ilic, Individual compositional cluster analysis, in Procedia Computer Science ed. by C.H. Dagli (Elsevier, 95, 2016), pp. 254–263

    Google Scholar 

  12. C. Domeniconi, K. Laskey, Bayesian Co-clustering, WIREs Computational Statistics, vol. 7 (Wiley, 2015), pp. 347–356

    Google Scholar 

  13. M.B. Ferraro, P. Giordani, Soft clustering, WIREs Comput. Stat. (2020)

    Google Scholar 

  14. L. Kaufman, P.J. Rousseeuw, Finding Groups in Data (Wiley, 1990)

    Book  Google Scholar 

  15. F. Klawonn, R. Kruse, R. Winkler, Fuzzy clustering: more than just fuzzification. Fuzzy Sets Syst. 281, 272–279 (2015)

    Article  MathSciNet  Google Scholar 

  16. G. Peters, Is there any need for rough clustering? Pattern Recogn. Lett. 53, 31–37 (2015)

    Article  Google Scholar 

  17. M. Roubens, Pattern classification problems and fuzzy sets. Fuzzy Sets Syst. 1, 239–253 (1978)

    Article  MathSciNet  Google Scholar 

  18. E.H. Ruspini, A new approach to clustering. Inform. Control. 15(1), 22–32 (1969)

    Article  Google Scholar 

  19. I. Gath, A.B. Geva, Unsupervised optimal fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-11. 7, 773–781 (1989)

    Google Scholar 

  20. D.E. Gustafson, W.C. Kessel, Fuzzy clustering with a fuzzy covariance matrix, in Proceedings of the IEEE CDC, (San Diego, CA, 1979), pp. 761–766

    Google Scholar 

  21. D. Ienco, G. Bordogna, Fuzzy extensions of the DBScan clustering algorithm. Soft Comput. 22, 1719–1730 (2018)

    Article  Google Scholar 

  22. A. Kandel, L. Yelowitz, Fuzzy chains. IEEE Trans. Syst. Man Cybern. SMC-4. 5, 472–475 (1974)

    Google Scholar 

  23. F. Klawonn, Exploring data sets for clusters and validating single clusters. Procedia Comput. Sci. 96, 1381–1390 (2016)

    Article  Google Scholar 

  24. W. Pedrycz, V. Loiac, S. Senatore, Proximity based fuzzy clustering (P-FCM). Fuzzy Sets Syst. 148, 21–41 (2004)

    Article  Google Scholar 

  25. T.A. Runkler, F. Steinke, A new approach to clustering using eigen decomposition, in WCCI 2010 IEEE World Congress on Computational Intelligence (2010), pp. 306–311

    Google Scholar 

  26. S. Tamura, S. Higuchi, K. Tanaka, Pattern classification based on fuzzy relations. IEEE Trans. Syst. Man Cybern. SMC-1. 1, 61–66 (1971)

    Google Scholar 

  27. C.F.J. ter Braak, Y. Kourmpetis, H.A.L. Kiers, M.C.A.M. Bink, Approximating a similarity matrix by a latent class model: a reappraisal of additive fuzzy clustering. Comput. Stat. Data Anal. 53, 3183–3193 (2009)

    Article  MathSciNet  Google Scholar 

  28. C.F.L. Ter Braak, M.P. Boer, L.R. Totir, C.R. Winkler, O.S. Smith, M.C.A.M. Bink, Identity-by-descent matrix decomposition using latent ancestral allele models. Genetics (2010)

    Google Scholar 

  29. M.J. Sabin, Convergence and consistency of fuzzy c-means/ISODATA algorithms, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9. 5, 661–668 (1987)

    Google Scholar 

  30. M.P. Windham, Cluster validity for the fuzzy c-means clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4. 4, 357–363 (1982)

    Google Scholar 

  31. X.L. Xie, G. Beni, A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-13. 8, 841–847 (1991)

    Google Scholar 

  32. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  33. L.A. Zadeh, Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971)

    Article  MathSciNet  Google Scholar 

  34. L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC-3. 1, 28–44 (1973)

    Google Scholar 

  35. H.-J. Zimmermann, Fuzzy set theory. WIREs Comp Stat, vol. 2 (Wiley, 2010), pp. 317–332

    Google Scholar 

  36. H. Tanaka, S. Uejima, K. Asai, Linear regression analysis with fuzzy model. IEEE Trans. Syst. Man Cybern. 12, 903–907 (1982)

    Article  Google Scholar 

  37. H. Tanaka, Fuzzy data analysis by possibilistic linear models. Fuzzy Sets Syst. 24, 363–375 (1987)

    Article  MathSciNet  Google Scholar 

  38. L. Billard, E. Diday, Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wiley, 2006)

    Book  Google Scholar 

  39. W.N. Anderson, R.J. Duffin, Series and parallel addition of matrices. J. Math. Anal. Appl. 26, 576–594 (1969)

    Article  MathSciNet  Google Scholar 

  40. A. Ben-Israel, T.N.E. Greville, Generalized inverses, theory and applications, 2nd edn. (Springer, 2003)

    Google Scholar 

  41. O. Krafft, An arithmetic-harmonic-mean inequality for nonnegative matrices. Linear Algebr. Its. Appl. 268, 243–246 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Sato-Ilic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato-Ilic, M. (2022). Clustering-Based Scaling for Healthcare Data. In: Virvou, M., Tsihrintzis, G.A., Bourbakis, N.G., Jain, L.C. (eds) Handbook on Artificial Intelligence-Empowered Applied Software Engineering. Artificial Intelligence-Enhanced Software and Systems Engineering, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-031-07650-3_9

Download citation

Publish with us

Policies and ethics