Skip to main content

Urinary Stone, Bone, and Cardiovascular Disease in Children

  • Chapter
  • First Online:
Diagnosis and Management of Pediatric Nephrolithiasis
  • 292 Accesses

Abstract

Urinary stone disease (USD) is a common condition that affects approximately one in eleven adults [1]. Relapse rates in adults have been shown to be up to 50% within 5–10 years with as many as 75% of patients forming another stone within 20 years [1, 2]. Urinary stone morbidity is associated with the excruciating pain of acute stone episodes as well as urinary tract obstruction and infection. Data has linked USD with multiple systemic disease states including chronic kidney disease (CKD) [3]. In addition, adults with USD have higher rates of cardiovascular disease (CVD) including coronary artery disease, hypertension, acute myocardial infarction (MI), and stroke [4, 5]. Correlation has been found between USD and decreased bone mineral density (BMD) and increased skeletal fracture rates [6, 7]. The exact mechanisms behind the association of stone, bone, and vascular disease are unknown. Inflammation has indirectly been implicated by the association of common inflammatory metabolic conditions including diabetes, obesity, hypertension, and dyslipidemia with USD as well as CVD and bone disease [8]. The natural history of whether urinary stones precede cardiovascular or bone disease development is unclear; however, stone forming children and young adults have shown evidence of early atherosclerosis and suboptimal BMD with increased risk of skeletal fractures [9–11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scales CD, Smith AC, Hanley JM, Saigal CS, Project UDiA. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160–5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moe OW. Kidney stones: pathophysiology and medical management. Lancet. 2006;367(9507):333–44.

    Article  CAS  PubMed  Google Scholar 

  3. Rule AD, Bergstralh EJ, Melton LJ 3rd, Li X, Weaver AL, Lieske JC. Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(4):804–11.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rule AD, Roger VL, Melton LJ, Bergstralh EJ, Li X, Peyser PA, et al. Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol. 2010;21(10):1641–4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu Y, Li S, Zeng Z, Wang J, Xie L, Li T, et al. Kidney stones and cardiovascular risk: a meta-analysis of cohort studies. Am J Kidney Dis. 2014;64(3):402–10.

    Article  PubMed  Google Scholar 

  6. Melton LJ 3rd, Crowson CS, Khosla S, Wilson DM, O'Fallon WM. Fracture risk among patients with urolithiasis: a population-based cohort study. Kidney Int. 1998;53(2):459–64.

    Article  PubMed  Google Scholar 

  7. Lauderdale DS, Thisted RA, Wen M, Favus MJ. Bone mineral density and fracture among prevalent kidney stone cases in the Third National Health and Nutrition Examination Survey. J Bone Miner Res. 2001;16(10):1893–8.

    Article  CAS  PubMed  Google Scholar 

  8. Sakhaee K. Nephrolithiasis as a systemic disorder. Curr Opin Nephrol Hypertens. 2008;17(3):304–9.

    Article  PubMed  Google Scholar 

  9. Kusumi K, Smith S, Barr-Beare E, Saxena V, Schober MS, Moore-Clingenpeel M, et al. Pediatric origins of nephrolithiasis-associated atherosclerosis. J Pediatr. 2015;167(5):1074–80.e2.

    Article  PubMed  Google Scholar 

  10. Denburg MR, Leonard MB, Haynes K, Tuchman S, Tasian G, Shults J, et al. Risk of fracture in urolithiasis: a population-based cohort study using the health improvement network. Clin J Am Soc Nephrol. 2014;9(12):2133–40.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schwaderer AL, Cronin R, Mahan JD, Bates CM. Low bone density in children with hypercalciuria and/or nephrolithiasis. Pediatr Nephrol. 2008;23(12):2209–14.

    Article  PubMed  Google Scholar 

  12. Westlund K. Urolithiasis and coronary heart disease: a note on association. Am J Epidemiol. 1973;97(3):167–72.

    Article  CAS  PubMed  Google Scholar 

  13. Hsi RS, Spieker AJ, Stoller ML, Jacobs DR, Reiner AP, McClelland RL, et al. Coronary artery calcium score and association with recurrent nephrolithiasis: the multi-ethnic study of atherosclerosis. J Urol. 2016;195(4 Pt 1):971–6.

    Article  CAS  PubMed  Google Scholar 

  14. Shavit L, Girfoglio D, Vijay V, Goldsmith D, Ferraro PM, Moochhala SH, et al. Vascular calcification and bone mineral density in recurrent kidney stone formers. Clin J Am Soc Nephrol. 2015;10(2):278–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reiner AP, Kahn A, Eisner BH, Pletcher MJ, Sadetsky N, Williams OD, et al. Kidney stones and subclinical atherosclerosis in young adults: the CARDIA study. J Urol. 2011;185(3):920–5.

    Article  PubMed  Google Scholar 

  16. Dalla Pozza R, Beyerlein A, Thilmany C, Weissenbacher C, Netz H, Schmidt H, et al. The effect of cardiovascular risk factors on the longitudinal evolution of the carotid intima medial thickness in children with type 1 diabetes mellitus. Cardiovasc Diabetol. 2011;10:53.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Barra S, Gaeta G, Cuomo S, Guarini P, Foglia MC, Capozzi G, et al. Early increase of carotid intima-media thickness in children with parental history of premature myocardial infarction. Heart. 2009;95(8):642–5.

    Article  CAS  PubMed  Google Scholar 

  18. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr. 2008;21(2):93–111. quiz 89-90

    Article  PubMed  Google Scholar 

  19. Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension. 2009;54(5):919–50.

    Article  CAS  PubMed  Google Scholar 

  20. Masterson JH, Woo JR, Chang DC, Chi T, L'Esperance JO, Stoller ML, et al. Dyslipidemia is associated with an increased risk of nephrolithiasis. Urolithiasis. 2015;43(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  21. Kang HW, Lee SK, Kim WT, Kim YJ, Yun SJ, Lee SC, et al. Hypertriglyceridemia and low high-density lipoprotein cholesterolemia are associated with increased hazard for urolithiasis. J Endourol. 2014;28(8):1001–5.

    Article  PubMed  Google Scholar 

  22. Jeong IG, Kang T, Bang JK, Park J, Kim W, Hwang SS, et al. Association between metabolic syndrome and the presence of kidney stones in a screened population. Am J Kidney Dis. 2011;58(3):383–8.

    Article  PubMed  Google Scholar 

  23. Maalouf NM, Sakhaee K, Parks JH, Coe FL, Adams-Huet B, Pak CY. Association of urinary pH with body weight in nephrolithiasis. Kidney Int. 2004;65(4):1422–5.

    Article  PubMed  Google Scholar 

  24. Siener R, Glatz S, Nicolay C, Hesse A. The role of overweight and obesity in calcium oxalate stone formation. Obes Res. 2004;12(1):106–13.

    Article  CAS  PubMed  Google Scholar 

  25. Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293(4):455–62.

    Article  CAS  PubMed  Google Scholar 

  26. West B, Luke A, Durazo-Arvizu RA, Cao G, Shoham D, Kramer H. Metabolic syndrome and self-reported history of kidney stones: the National Health and Nutrition Examination Survey (NHANES III) 1988-1994. Am J Kidney Dis. 2008;51(5):741–7.

    Article  PubMed  Google Scholar 

  27. Daudon M, Lacour B, Jungers P. Influence of body size on urinary stone composition in men and women. Urol Res. 2006;34(3):193–9.

    Article  PubMed  Google Scholar 

  28. Negri AL, Spivacow FR, Del Valle EE, Forrester M, Rosende G, Pinduli I. Role of overweight and obesity on the urinary excretion of promoters and inhibitors of stone formation in stone formers. Urol Res. 2008;36(6):303–7.

    Article  CAS  PubMed  Google Scholar 

  29. Powell CR, Stoller ML, Schwartz BF, Kane C, Gentle DL, Bruce JE, et al. Impact of body weight on urinary electrolytes in urinary stone formers. Urology. 2000;55(6):825–30.

    Article  CAS  PubMed  Google Scholar 

  30. Hamano S, Nakatsu H, Suzuki N, Tomioka S, Tanaka M, Murakami S. Kidney stone disease and risk factors for coronary heart disease. Int J Urol. 2005;12(10):859–63.

    Article  PubMed  Google Scholar 

  31. Inci M, Demirtas A, Sarli B, Akinsal E, Baydilli N. Association between body mass index, lipid profiles, and types of urinary stones. Ren Fail. 2012;34(9):1140–3.

    Article  CAS  PubMed  Google Scholar 

  32. Dhore CR, Cleutjens JP, Lutgens E, Cleutjens KB, Geusens PP, Kitslaar PJ, et al. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2001;21(12):1998–2003.

    Article  CAS  PubMed  Google Scholar 

  33. Giachelli CM, Steitz S. Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol. 2000;19(7):615–22.

    Article  CAS  PubMed  Google Scholar 

  34. Khan SR. Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol. 2004;8(2):75–88.

    Article  CAS  PubMed  Google Scholar 

  35. Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, Hirose M, et al. Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res. 2010;25(12):2701–11.

    Article  PubMed  CAS  Google Scholar 

  36. Liaw L, Almeida M, Hart CE, Schwartz SM, Giachelli CM. Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ Res. 1994;74(2):214–24.

    Article  CAS  PubMed  Google Scholar 

  37. Kovacevic L, Lu H, Caruso JA, Kovacevic N, Lakshmanan Y. Urinary proteomics reveals association between pediatric nephrolithiasis and cardiovascular disease. Int Urol Nephrol. 2018;50(11):1949–54.

    Article  CAS  PubMed  Google Scholar 

  38. Matlaga BR, Schaeffer AJ, Novak TE, Trock BJ. Epidemiologic insights into pediatric kidney stone disease. Urol Res. 2010;38(6):453–7.

    Article  PubMed  Google Scholar 

  39. Schaeffer AJ, Feng Z, Trock BJ, Mathews RI, Neu AM, Gearhart JP, et al. Medical comorbidities associated with pediatric kidney stone disease. Urology. 2011;77(1):195–9.

    Article  PubMed  Google Scholar 

  40. Kokorowski PJ, Routh JC, Hubert KC, Graham DA, Nelson CP. Association of urolithiasis with systemic conditions among pediatric patients at children's hospitals. J Urol. 2012;188(4 Suppl):1618–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim SS, Luan X, Canning DA, Landis JR, Keren R. Association between body mass index and urolithiasis in children. J Urol. 2011;186(4 Suppl):1734–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sarica K, Eryildirim B, Yencilek F, Kuyumcuoglu U. Role of overweight status on stone-forming risk factors in children: a prospective study. Urology. 2009;73(5):1003–7.

    Article  PubMed  Google Scholar 

  43. Sas DJ. An update on the changing epidemiology and metabolic risk factors in pediatric kidney stone disease. Clin J Am Soc Nephrol. 2011;6(8):2062–8.

    Article  PubMed  Google Scholar 

  44. Scales CD, Curtis LH, Norris RD, Springhart WP, Sur RL, Schulman KA, et al. Changing gender prevalence of stone disease. J Urol. 2007;177(3):979–82.

    Article  PubMed  Google Scholar 

  45. Scales CD, Tasian GE, Schwaderer AL, Goldfarb DS, Star RA, Kirkali Z. Urinary stone disease: advancing knowledge, patient care, and population health. Clin J Am Soc Nephrol. 2016;11(7):1305–12.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Daudon M, Doré JC, Jungers P, Lacour B. Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach. Urol Res. 2004;32(3):241–7.

    Article  PubMed  Google Scholar 

  47. Domingos F, Serra A. Nephrolithiasis is associated with an increased prevalence of cardiovascular disease. Nephrol Dial Transplant. 2011;26(3):864–8.

    Article  PubMed  Google Scholar 

  48. Ferraro PM, Taylor EN, Eisner BH, Gambaro G, Rimm EB, Mukamal KJ, et al. History of kidney stones and the risk of coronary heart disease. JAMA. 2013;310(4):408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin SY, Lin CL, Chang YJ, Hsu WH, Lin CC, Wang IK, et al. Association between kidney stones and risk of stroke: a nationwide population-based cohort study. Medicine (Baltimore). 2016;95(8):e2847.

    Article  CAS  Google Scholar 

  50. Cheungpasitporn W, Thongprayoon C, Mao MA, O'Corragain OA, Edmonds PJ, Erickson SB. The risk of coronary heart disease in patients with kidney stones: a systematic review and meta-analysis. N Am J Med Sci. 2014;6(11):580–5.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cauley JA. Public health impact of osteoporosis. J Gerontol A Biol Sci Med Sci. 2013;68(10):1243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94.

    Article  PubMed  Google Scholar 

  53. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;94(6):646–50.

    Google Scholar 

  54. Khan AA, Bachrach L, Brown JP, Hanley DA, Josse RG, Kendler DL, et al. Standards and guidelines for performing central dual-energy x-ray absorptiometry in premenopausal women, men, and children. J Clin Densitom. 2004;7(1):51–64.

    Article  PubMed  Google Scholar 

  55. Lewiecki EM, Gordon CM, Baim S, Leonard MB, Bishop NJ, Bianchi ML, et al. International Society for Clinical Densitometry 2007 Adult and Pediatric Official Positions. Bone. 2008;43(6):1115–21.

    Article  PubMed  Google Scholar 

  56. Boot AM, de Ridder MA, van der Sluis IM, van Slobbe I, Krenning EP, Keizer-Schrama SM. Peak bone mineral density, lean body mass and fractures. Bone. 2010;46(2):336–41.

    Article  PubMed  Google Scholar 

  57. Ferrari SL, Chevalley T, Bonjour JP, Rizzoli R. Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility? J Bone Miner Res. 2006;21(4):501–7.

    Article  PubMed  Google Scholar 

  58. Schwaderer AL, Kusumi K, Ayoob RM. Pediatric nephrolithiasis and the link to bone metabolism. Curr Opin Pediatr. 2014;26(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  59. García-Nieto V, Ferrández C, Monge M, de Sequera M, Rodrigo MD. Bone mineral density in pediatric patients with idiopathic hypercalciuria. Pediatr Nephrol. 1997;11(5):578–83.

    Article  PubMed  Google Scholar 

  60. Penido MG, Lima EM, Marino VS, Tupinambá AL, França A, Souto MF. Bone alterations in children with idiopathic hypercalciuria at the time of diagnosis. Pediatr Nephrol. 2003;18(2):133–9.

    Article  PubMed  Google Scholar 

  61. Vezzoli G, Rubinacci A, Bianchin C, Arcidiacono T, Giambona S, Mignogna G, et al. Intestinal calcium absorption is associated with bone mass in stone-forming women with idiopathic hypercalciuria. Am J Kidney Dis. 2003;42(6):1177–83.

    Article  PubMed  Google Scholar 

  62. Jaeger P, Lippuner K, Casez JP, Hess B, Ackermann D, Hug C. Low bone mass in idiopathic renal stone formers: magnitude and significance. J Bone Miner Res. 1994;9(10):1525–32.

    Article  CAS  PubMed  Google Scholar 

  63. Kusumi K, Schwaderer AL, Clark C, Budge K, Hussein N, Raina R, et al. Bone mineral density in adolescent urinary stone formers: is sex important? Urolithiasis. 2020;48:329.

    Article  PubMed  Google Scholar 

  64. Kusumi K, Becknell B, Schwaderer A. Trends in pediatric urolithiasis: patient characteristics, associated diagnoses, and financial burden. Pediatr Nephrol. 2014;30:805.

    Article  PubMed  Google Scholar 

  65. Novak TE, Lakshmanan Y, Trock BJ, Gearhart JP, Matlaga BR. Sex prevalence of pediatric kidney stone disease in the United States: an epidemiologic investigation. Urology. 2009;74(1):104–7.

    Article  PubMed  Google Scholar 

  66. Rosenfield RL, Bachrach LK, Chernausek SD, Gertner JM, Gottschalk M, Hardin DS, et al. Current age of onset of puberty. Pediatrics. 2000;106(3):622–3.

    Article  CAS  PubMed  Google Scholar 

  67. (US) OotSG. Bone health and osteoporosis: a report of the surgeon general. 2004.

    Google Scholar 

  68. Richards JB, Zheng HF, Spector TD. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet. 2012;13(8):576–88.

    Article  CAS  PubMed  Google Scholar 

  69. Spivacow FR, Negri AL, del Valle EE, Calviño I, Fradinger E, Zanchetta JR. Metabolic risk factors in children with kidney stone disease. Pediatr Nephrol. 2008;23(7):1129–33.

    Article  PubMed  Google Scholar 

  70. Gao B, Yasui T, Itoh Y, Li Z, Okada A, Tozawa K, et al. Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int. 2007;72(5):592–8.

    Article  CAS  PubMed  Google Scholar 

  71. Richards JB, Kavvoura FK, Rivadeneira F, Styrkársdóttir U, Estrada K, Halldórsson BV, et al. Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med. 2009;151(8):528–37.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Barry ST, Ludbrook SB, Murrison E, Horgan CM. Analysis of the alpha4beta1 integrin-osteopontin interaction. Exp Cell Res. 2000;258(2):342–51.

    Article  CAS  PubMed  Google Scholar 

  73. Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet. 2009;41(8):926–30.

    Article  CAS  PubMed  Google Scholar 

  74. Elkouby-Naor L, Abassi Z, Lagziel A, Gow A, Ben-Yosef T. Double gene deletion reveals lack of cooperation between claudin 11 and claudin 14 tight junction proteins. Cell Tissue Res. 2008;333(3):427–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nicoll R, McLaren HJ. The acid-ash hypothesis revisited: a reassessment of the impact of dietary acidity on bone. J Bone Miner Metab. 2014;32(5):469–75.

    Article  CAS  PubMed  Google Scholar 

  76. Hanley DA, Whiting SJ. Does a high dietary acid content cause bone loss, and can bone loss be prevented with an alkaline diet? J Clin Densitom. 2013;16(4):420–5.

    Article  PubMed  Google Scholar 

  77. Sampath A, Kossoff EH, Furth SL, Pyzik PL, Vining EP. Kidney stones and the ketogenic diet: risk factors and prevention. J Child Neurol. 2007;22(4):375–8.

    Article  PubMed  Google Scholar 

  78. Schwalfenberg GK. The alkaline diet: is there evidence that an alkaline pH diet benefits health? J Environ Public Health. 2012;2012:727630.

    PubMed  Google Scholar 

  79. Darling AL, Millward DJ, Torgerson DJ, Hewitt CE, Lanham-New SA. Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr. 2009;90(6):1674–92.

    Article  CAS  PubMed  Google Scholar 

  80. Meng X, Zhu K, Devine A, Kerr DA, Binns CW, Prince RL. A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women. J Bone Miner Res. 2009;24(11):1827–34.

    Article  CAS  PubMed  Google Scholar 

  81. Kerstetter JE, Kenny AM, Insogna KL. Dietary protein and skeletal health: a review of recent human research. Curr Opin Lipidol. 2011;22(1):16–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ho-Pham LT, Nguyen ND, Nguyen TV. Effect of vegetarian diets on bone mineral density: a Bayesian meta-analysis. Am J Clin Nutr. 2009;90(4):943–50.

    Article  CAS  PubMed  Google Scholar 

  83. Frassetto LA, Todd KM, Morris RC, Sebastian A. Worldwide incidence of hip fracture in elderly women: relation to consumption of animal and vegetable foods. J Gerontol A Biol Sci Med Sci. 2000;55(10):M585-92.

    Article  PubMed  Google Scholar 

  84. Sahni S, Cupples LA, McLean RR, Tucker KL, Broe KE, Kiel DP, et al. Protective effect of high protein and calcium intake on the risk of hip fracture in the Framingham offspring cohort. J Bone Miner Res. 2010;25(12):2770–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Calvez J, Poupin N, Chesneau C, Lassale C, Tomé D. Protein intake, calcium balance and health consequences. Eur J Clin Nutr. 2012;66(3):281–95.

    Article  CAS  PubMed  Google Scholar 

  86. Pak CY, Britton F, Peterson R, Ward D, Northcutt C, Breslau NA, et al. Ambulatory evaluation of nephrolithiasis. Classification, clinical presentation and diagnostic criteria. Am J Med. 1980;69(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  87. Bataille P, Achard JM, Fournier A, Boudailliez B, Westeel PF, el Esper N, et al. Diet, vitamin D and vertebral mineral density in hypercalciuric calcium stone formers. Kidney Int. 1991;39(6):1193–205.

    Article  CAS  PubMed  Google Scholar 

  88. Pacifici R, Rothstein M, Rifas L, Lau KH, Baylink DJ, Avioli LV, et al. Increased monocyte interleukin-1 activity and decreased vertebral bone density in patients with fasting idiopathic hypercalciuria. J Clin Endocrinol Metab. 1990;71(1):138–45.

    Article  CAS  PubMed  Google Scholar 

  89. Sakhaee K, Maalouf NM, Kumar R, Pasch A, Moe OW. Nephrolithiasis-associated bone disease: pathogenesis and treatment options. Kidney Int. 2011;79(4):393–403.

    Article  CAS  PubMed  Google Scholar 

  90. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V. Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab. 2004;89(9):4246–53.

    Article  CAS  PubMed  Google Scholar 

  91. Leopold JA. Vascular calcification: mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 2015;25(4):267–74.

    Article  CAS  PubMed  Google Scholar 

  92. Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W, Demer LL. Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res. 2001;16(1):182–8.

    Article  CAS  PubMed  Google Scholar 

  93. Naito S, Ito M, Sekine I, Hirano T, Iwasaki K, Niwa M. Femoral head necrosis and osteopenia in stroke-prone spontaneously hypertensive rats (SHRSPs). Bone. 1993;14(5):745–53.

    Article  CAS  PubMed  Google Scholar 

  94. Fabris A, Ferraro PM, Comellato G, Caletti C, Fantin F, Zaza G, et al. The relationship between calcium kidney stones, arterial stiffness and bone density: unraveling the stone-bone-vessel liaison. J Nephrol. 2015;28(5):549–55.

    Article  CAS  PubMed  Google Scholar 

  95. Huang MY, Chaturvedi LS, Koul S, Koul HK. Oxalate stimulates IL-6 production in HK-2 cells, a line of human renal proximal tubular epithelial cells. Kidney Int. 2005;68(2):497–503.

    Article  CAS  PubMed  Google Scholar 

  96. de Water R, Leenen PJ, Noordermeer C, Nigg AL, Houtsmuller AB, Kok DJ, et al. Cytokine production induced by binding and processing of calcium oxalate crystals in cultured macrophages. Am J Kidney Dis. 2001;38(2):331–8.

    Article  PubMed  Google Scholar 

  97. Canales BK, Anderson L, Higgins L, Slaton J, Roberts KP, Liu N, et al. Second prize: comprehensive proteomic analysis of human calcium oxalate monohydrate kidney stone matrix. J Endourol. 2008;22(6):1161–7.

    Article  PubMed  Google Scholar 

  98. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107(3):499–511.

    Article  PubMed  Google Scholar 

  99. Jimi E, Nakamura I, Ikebe T, Akiyama S, Takahashi N, Suda T. Activation of NF-kappaB is involved in the survival of osteoclasts promoted by interleukin-1. J Biol Chem. 1998;273(15):8799–805.

    Article  CAS  PubMed  Google Scholar 

  100. Kotake S, Sato K, Kim KJ, Takahashi N, Udagawa N, Nakamura I, et al. Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J Bone Miner Res. 1996;11(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  101. Kurihara N, Bertolini D, Suda T, Akiyama Y, Roodman GD. IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J Immunol. 1990;144(11):4226–30.

    CAS  PubMed  Google Scholar 

  102. Chu DI, Tasian GE, Copelovitch L. Pediatric kidney stones—avoidance and treatment. Curr Treat Options Pediatr. 2016;2(2):104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tang J, McFann KK, Chonchol MB. Association between serum 25-hydroxyvitamin D and nephrolithiasis: the National Health and nutrition examination survey III, 1988-94. Nephrol Dial Transplant. 2012;27(12):4385–9.

    Article  CAS  PubMed  Google Scholar 

  104. Letavernier E, Daudon M, Vitamin D. Hypercalciuria and kidney stones. Nutrients. 2018;10:3.

    Article  CAS  Google Scholar 

  105. Ferraro PM, Taylor EN, Gambaro G, Curhan GC. Vitamin D intake and the risk of incident kidney stones. J Urol. 2017;197(2):405–10.

    Article  CAS  PubMed  Google Scholar 

  106. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  CAS  PubMed  Google Scholar 

  107. Lajeunesse D, Delalandre A, Guggino SE. Thiazide diuretics affect osteocalcin production in human osteoblasts at the transcription level without affecting vitamin D3 receptors. J Bone Miner Res. 2000;15(5):894–901.

    Article  CAS  PubMed  Google Scholar 

  108. Fernández-Rodríguez A, Arrabal-Martín M, García-Ruiz MJ, Arrabal-Polo MA, Pichardo-Pichardo S, Zuluaga-Gómez A. The role of thiazides in the prophylaxis of recurrent calcium lithiasis. Actas Urol Esp. 2006;30(3):305–9.

    Article  PubMed  Google Scholar 

  109. Legroux-Gerot I, Catanzariti L, Marchandise X, Duquesnoy B, Cortet B. Bone mineral density changes in hypercalciuretic osteoporotic men treated with thiazide diuretics. Joint Bone Spine. 2004;71(1):51–5.

    Article  PubMed  Google Scholar 

  110. Reusz GS, Dobos M, Vásárhelyi B, Sallay P, Szabó A, Horváth C, et al. Sodium transport and bone mineral density in hypercalciuria with thiazide treatment. Pediatr Nephrol. 1998;12(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  111. Jehle S, Zanetti A, Muser J, Hulter HN, Krapf R. Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J Am Soc Nephrol. 2006;17(11):3213–22.

    Article  CAS  PubMed  Google Scholar 

  112. Jehle S, Hulter HN, Krapf R. Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab. 2013;98(1):207–17.

    Article  CAS  PubMed  Google Scholar 

  113. Pak CY, Peterson RD, Poindexter J. Prevention of spinal bone loss by potassium citrate in cases of calcium urolithiasis. J Urol. 2002;168(1):31–4.

    Article  PubMed  Google Scholar 

  114. Moreira Guimarães Penido MG, de Sousa Tavares M, Campos Linhares M, Silva Barbosa AC, Cunha M. Longitudinal study of bone mineral density in children with idiopathic hypercalciuria. Pediatr Nephrol. 2012;27(1):123–30.

    Article  PubMed  Google Scholar 

  115. Lloyd-Jones DM, Wilson PW, Larson MG, Beiser A, Leip EP, D'Agostino RB, et al. Framingham risk score and prediction of lifetime risk for coronary heart disease. Am J Cardiol. 2004;94(1):20–4.

    Article  PubMed  Google Scholar 

  116. Taylor EN, Fung TT, Curhan GC. DASH-style diet associates with reduced risk for kidney stones. J Am Soc Nephrol. 2009;20(10):2253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Samuel S, Klarenbach SW, et al. Kidney stones and cardiovascular events: a cohort study. Clin J Am Soc Nephrol. 2014;9(3):506–12.

    Article  PubMed  Google Scholar 

  118. Pietrow PK, Pope JC, Adams MC, Shyr Y, Brock JW. Clinical outcome of pediatric stone disease. J Urol. 2002;167(2 Pt 1):670–3.

    Article  PubMed  Google Scholar 

  119. Chung SD, Liu SP, Keller JJ, Lin HC. Urinary calculi and an increased risk of stroke: a population-based follow-up study. BJU Int. 2012;110(11 Pt C):E1053-9.

    PubMed  Google Scholar 

  120. Artemiuk I, Pańczyk-Tomaszewska M, Adamczuk D, Przedlacki J, Roszkowska-Blaim M. Bone mineral density in children with idiopathic hypercalciuria. Dev Period Med. 2015;19(3 Pt 2):356–61.

    PubMed  Google Scholar 

  121. Escribano J, Rubio-Torrents C, Ferré N, Luque V, Grote V, Zaragoza-Jordana M, et al. Reduced bone mass in 7-year-old children with asymptomatic idiopathic hypercalciuria. Ann Nutr Metab. 2014;64(3–4, 304):–13.

    Google Scholar 

  122. Moreira Guimarães Penido MG, de Sousa TM. Bone disease in pediatric idiopathic hypercalciuria. World J Nephrol. 2012;1(2):54–62.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Schwaderer AL, Srivastava T, Schueller L, Cronin R, Mahan JD, Hains D. Dietary modifications alone do not improve bone mineral density in children with idiopathic hypercalciuria. Clin Nephrol. 2011;76(5):341–7.

    Article  CAS  PubMed  Google Scholar 

  124. Penido MG, Lima EM, Souto MF, Marino VS, Tupinambá AL, França A. Hypocitraturia: a risk factor for reduced bone mineral density in idiopathic hypercalciuria? Pediatr Nephrol. 2006;21(1):74–8.

    Article  PubMed  Google Scholar 

  125. Skalova S, Palicka V, Kutilek S. Bone mineral density and urinary N-acetyl-beta-D-glucosaminidase activity in paediatric patients with idiopathic hypercalciuria. Nephrology (Carlton). 2005;10(2):99–102.

    Article  CAS  Google Scholar 

  126. García-Nieto V, Navarro JF, Monge M, García-Rodríguez VE. Bone mineral density in girls and their mothers with idiopathic hypercalciuria. Nephron Clin Pract. 2003;94(4):c89–93.

    Article  PubMed  Google Scholar 

  127. Polito C, Iolascon G, Nappi B, Andreoli S, La Manna A. Growth and bone mineral density in long-lasting idiopathic hypercalciuria. Pediatr Nephrol. 2003;18(6):545–7.

    Article  PubMed  Google Scholar 

  128. Freundlich M, Alonzo E, Bellorin-Font E, Weisinger JR. Reduced bone mass in children with idiopathic hypercalciuria and in their asymptomatic mothers. Nephrol Dial Transplant. 2002;17(8):1396–401.

    Article  PubMed  Google Scholar 

  129. Reusz G. Idiopathic hypercalciuria in childhood. Orv Hetil. 1998;139(49):2957–62.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Kyra Deep and Siddhartha Singh of the Northeast Ohio Medical University, Rootstown, Ohio, for their contributions to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Kusumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kusumi, K., Raina, R. (2022). Urinary Stone, Bone, and Cardiovascular Disease in Children. In: Paloian, N.J., Penniston, K.L. (eds) Diagnosis and Management of Pediatric Nephrolithiasis. Springer, Cham. https://doi.org/10.1007/978-3-031-07594-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07594-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07593-3

  • Online ISBN: 978-3-031-07594-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics