Skip to main content

Gesture-Based Feedback in Human-Robot Interaction for Object Manipulation

  • Conference paper
  • First Online:
Technological Innovation for Digitalization and Virtualization (DoCEIS 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 649))

Included in the following conference series:

  • 299 Accesses

Abstract

Human-Robot Interaction is a currently highly active research area with many advances in interfaces that allow humans and robots to have bi-directional feedback of their intentions. However, in an industrial setting, current robot feedback methods struggle to successfully deliver messages since the environment makes it difficult and inconvenient for the user to perceive them. This paper proposes a novel method for robot feedback, leveraging the addition of social cues to robot movement to notify the human of its intentions. Through the use of robotic gestures, we believe it is possible to successfully convey the robots’ goals in interactions with humans. To verify this hypothesis, a proof of concept was developed in a simulated environment using a robotic arm manipulator that notifies the user using gestures when it needs to correct the pose of an object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ros.org/.

  2. 2.

    These packages and the version used are referenced in [13].

  3. 3.

    https://ompl.kavrakilab.org/.

References

  1. Goel, R., Gupta, P.: Robotics and Industry 4.0. In: Nayyar, A., Kumar, A. (eds.) A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development, pp. 157–169. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14544-6_9

    Chapter  Google Scholar 

  2. Matheson, E., Minto, R., Zampieri, E.G.G., Faccio, M., Rosati, G.: Human–robot collaboration in manufacturing applications: a review. Robotics 8, 100 (2019)

    Article  Google Scholar 

  3. Berg, J., Lu, S.: Review of interfaces for industrial human-robot interaction. Curr. Robot. Rep. 1(2), 27–34 (2020). https://doi.org/10.1007/s43154-020-00005-6

    Article  Google Scholar 

  4. Erel, H., Tov, T.S., Kessler, Y., Zuckerman, O.: Robots are always social. ACM 5, 1–6 (2019). https://doi.org/10.1145/3290607.3312758

    Article  Google Scholar 

  5. Fechter, M., Foith-Förster, P., Pfeiffer, M.S., Bauernhansl, T.: Axiomatic design approach for human-robot collaboration in flexibly linked assembly layouts. Proc. CIRP 50, 629–634 (2016). https://doi.org/10.1016/j.procir.2016.04.186

    Article  Google Scholar 

  6. Maksymova, S., Matarneh, R., Lyashenko, V.V., Belova, N.V.: Voice control for an industrial robot as a combination of various robotic assembly process models. J. Comput. Commun. 5(11), 1–15 (2017). https://doi.org/10.4236/jcc.2017.511001

    Article  Google Scholar 

  7. Neto, P., Simão, M., Mendes, N., Safeea, M.: Gesture-based human-robot interaction for human assistance in manufacturing. Int. J. Adv. Manuf. Technol. 101(1–4), 119–135 (2018). https://doi.org/10.1007/s00170-018-2788-x

    Article  Google Scholar 

  8. Fang, H.C., Ong, S.K., Nee, A.Y.C.: Novel AR-based interface for human-robot interaction and visualization. Adv. Manuf. 2(4), 275–288 (2014). https://doi.org/10.1007/s40436-014-0087-9

    Article  Google Scholar 

  9. Andronas, D., Apostolopoulos, G., Fourtakas, N., Makris, S.: Multi-modal interfaces for natural human-robot interaction. Proc. Manuf. 54, 197–202 (2021). https://doi.org/10.1016/j.promfg.2021.07.030

    Article  Google Scholar 

  10. Berg, J., Lottermoser, A., Richter, C., Reinhart, G.: Human-robot-interaction for mobile industrial robot teams. Procedia CIRP 79, 614–619 (2019). https://doi.org/10.1016/j.procir.2019.02.080

    Article  Google Scholar 

  11. Clair, A.S., Mataric, M.: How robot verbal feedback can improve team performance in human-robot task collaborations. IEEE Comput. Soc. 3, 213–220 (2015)

    Google Scholar 

  12. Lohse, M., Rothuis, R., Gallego-Perez, J., Karreman, D.E., Evers, V.: Robotgestures make difficult tasks easier: the impact of gestures on perceived workload and task performance. ACM 4, 1459–1466 (2014). https://doi.org/10.1145/2556288.2557274

    Article  Google Scholar 

  13. Unity-technologies/robotics-object-pose-estimation. https://github.com/Unity-Technologies/Robotics-Object-Pose-Estimation/

  14. Coleman, D., Sucan, I., Chitta, S., Correll, N.: Reducing the barrier to entry of complex robotic software: a move it! case study. arXiv preprint arXiv:1404.3785 (2014)

    Google Scholar 

  15. Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deepobject pose estimation for semantic robotic grasping of household objects. arXiv preprint arXiv:1809.10790v1 (2018)

    Google Scholar 

  16. Doosti, B., Naha, S., Mirbagheri, M., Crandall, D.J.: Hope-net: A Graph-Based Model for Hand-Object Pose Estimation, pp. 6608–6617 (2020). http://vision.sice.indiana.edu/projects/hopenet

  17. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199v3 (2017)

    Google Scholar 

  18. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domainrandomization for transferring deep neural networks from simulation to the real world arXiv preprint arXiv:1703.06907 (2017)

    Google Scholar 

  19. Kuffner, J., LaValle, S.: Rrt-connect: An Efficient Approach to Single-Query Path Planning, vol. 2, pp. 995–1001. IEEE (2000). http://ieeexplore.ieee.org/document/844730/

  20. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. arXiv preprint arXiv:1105.1186 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Filipe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filipe, L., Peres, R.S., Marques, F., Barata, J. (2022). Gesture-Based Feedback in Human-Robot Interaction for Object Manipulation. In: Camarinha-Matos, L.M. (eds) Technological Innovation for Digitalization and Virtualization. DoCEIS 2022. IFIP Advances in Information and Communication Technology, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-031-07520-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07520-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07519-3

  • Online ISBN: 978-3-031-07520-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics