Skip to main content

Healthier and Sustainable Food Systems: Integrating Underutilised Crops in a ‘Theory of Change Approach’

  • Chapter
  • First Online:
Biodiversity, Functional Ecosystems and Sustainable Food Production

Abstract

Increasingly, consumers are paying attention to healthier food diets, “healthy” food attributes (such as “freshness”, “naturalness” and “nutritional value”), and the overall sustainability of production and processing methods. Other significant trends include a growing demand for regional and locally produced/supplied and less processed food. To meet these demands, food production and processing need to evolve to preserve the raw material and natural food properties while ensuring such sustenance is healthy, tasty, and sustainable. In parallel, it is necessary to understand the influence of consumers’ practices in maintaining the beneficial food attributes from purchasing to consumption. The whole supply chain must be resilient, fair, diverse, transparent, and economically balanced to make different food systems sustainable. This chapter focuses on the role of dynamic value chains using biodiverse, underutilised crops to improve food system resilience and deliver foods with good nutritional and health properties while ensuring low environmental impacts, and resilient ecosystem functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari, L., Hussain, A., & Rasul, G. (2017). Tapping the potential of neglected and underutilized food crops for sustainable nutrition security in the mountains of Pakistan and Nepal. Sustainability, 9(2), 291. https://doi.org/10.3390/su9020291

    Article  Google Scholar 

  • Alonso-Ayuso, M., Gabriel, J. L., & Quemada, M. (2016). Nitrogen use efficiency and residual effect of fertilizers with nitrification inhibitors. European Journal of Agronomy, 80, 1–8. https://doi.org/10.1016/j.eja.2016.06.008

    Article  CAS  Google Scholar 

  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment, 74(1), 19–31.

    Article  Google Scholar 

  • Altieri, M. A., Merrick, L., (1987). In Situ Conservation of Crop Genetic Resources through Maintenance of Traditional Farming Systems, Economic Botany 41(1): 86–96.

    Google Scholar 

  • Anastasi, U., Corinzia, S. A., Cosentino, S. L., et al. (2019). Performances of durum wheat varieties under conventional and no-chemical input management systems in a semiarid Mediterranean environment. Agronomy, 9, 788. https://doi.org/10.3390/agronomy9120788

    Article  Google Scholar 

  • Annicchiarico, P., Nazzicari, N., Laouar, M., et al. (2020). Development and proof-of-concept application of genome-enabled selection for pea grain yield under severe terminal drought. International Journal of Molecular Sciences, 21, 2414. https://doi.org/10.3390/ijms21072414

    Article  PubMed  PubMed Central  Google Scholar 

  • Araus, J. L., Kefauver, S. C., Zaman-Allah, M., et al. (2018). Translating high-throughput phenotyping into genetic gain. Trends in Plant Science, 23, 451–466. https://doi.org/10.1016/j.tplants.2018.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbikie Distillery. (2021). The Nadar collection. https://arbikie.com/pages/nadar-collection. Accessed 31 Jan 2022.

  • Asare, P. A., Kpankpari, R., Adu, M. O., et al. (2020). Phenotypic charcaterization of tiger nuts (Cyperus esculentus L.) from major growing areas in Ghana. Scientific World Journal, 2020, 7232591. https://doi.org/10.1155/2020/7232591

    Article  PubMed  PubMed Central  Google Scholar 

  • Azam, M. M., Waris, A., & Nahar, N. M. (2005). Properties and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass & Bioenergy, 29, 293–302.

    Article  Google Scholar 

  • Azeke, M. A., Elsanhoty, R. M., Egielewa, S. J., et al. (2011). The effect of germination on the phytase activity, phytate and total phosphorus contents of some Nigerian-grown grain legumes. Journal of the Science of Food and Agriculture, 91(1), 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Baker, B. P., & Russell, J. A. (2017). Capturing a value-added niche market: Articulation of local organic grain. American Journal of Agricultural Economics, 99, 532–545.

    Article  Google Scholar 

  • Baldermann, S., Blagojević, L., Frede, K., et al. (2016). Are neglected plants the food for the future? Critical Reviews in Plant Sciences, 35(2), 106–119.

    Article  CAS  Google Scholar 

  • Ballhorn, D. J., Kautz, S., Heil, M., et al. (2009). Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PLoS One, 4(5), e5450.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bals, B. D., Dale, B. E., & Balan, V. (2012). Recovery of leaf protein for animal feed and high-value uses. In C. Bergeron, D. J. Carrier, & S. Ramaswamy (Eds.), Biorefinery co-products (pp. 179–197). Wiley.

    Chapter  Google Scholar 

  • Bationo, A., Ntare, B., Tarawali, S., et al. (2002). Soil fertility management and cowpea production in the semiarid tropics. In Challenges and opportunities for enhancing sustainable cowpea production (pp. 301–318). IITA.

    Google Scholar 

  • Bavec, F., Lisec, U., & Bavec, M. (2017). Importance of underutilized field crops for increasing functional biodiversity. In B. Şen & O. Grillo (Eds.), Selected studies in biodiversity. IntechOpen. https://doi.org/10.5772/intechopen.70472

    Chapter  Google Scholar 

  • Bekkering, C. S., & Tian, L. (2019). Thinking outside of the cereal box: Breeding underutilized (pseudo) cereals for improved human nutrition. Frontiers in Genetics, 10, 1289. https://doi.org/10.3389/fgene.2019.01289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benner, E., Profeta, A., Wirsig, A., et al. (2008). Übergangsregelung Zum Herkunftsschutz Bei Agrarprodukten Und Lebensmitteln Aus Dem Blickwinkel Der Transaktions- Und Der Informationsökonomie. https://doi.org/10.22004/AG.ECON.52644

  • Benton, T. G., & Bailey, R. (2019). The paradox of productivity: Agricultural productivity promotes food system inefficiency. Global Sustainability, 2, e6. https://doi.org/10.1017/SUS.2019.3

    Article  Google Scholar 

  • Berbereia, V. L. D. (2015). Promoção do uso de alimentos promotores de saúde na dieta de grupos socioeconómicos desfavorecidos. https://repositorio.uac.pt/handle/10400.3/3551

  • Beulens, A. J., Broens, D. F., Folstar, P., et al. (2005). Food safety and transparency in food chains and networks relationships and challenges. Food Control, 16, 481–486.

    Article  Google Scholar 

  • Bioversity International and IFAD. (2021). How to do. Mainstreaming NUS in national policy for nutritionoutcomes. IFAD. https://www.ifad.org/en/web/knowledge/-/how-to-do-note-mainstreaming-nus-in-national-policy-for-nutrition-outcomes

  • Biowert (2021) Products. https://biowert.com/products. Accessed 8 Nov 2021.

  • Birkhofer, K., Smith, H. G., & Rundlöf, M. (2016). Environmental impacts of organic farming. In eLS. Wiley. https://doi.org/10.1002/9780470015902.a0026341

    Chapter  Google Scholar 

  • Bishop, K. R., Betzelberger, A. M., Long, S. P., et al. (2015). Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free- air CO2 enrichment. Plant, Cell & Environment, 38, 1765–1774.

    Article  Google Scholar 

  • BLE. (n.d.). Pro-Kopf-Konsum von Hülsenfrüchten in Deutschland bis 2016/2017 | Statista. https://de.statista.com/statistik/daten/studie/175416/umfrage/pro-kopf-verbrauch-von-huelsenfruechten-in-deutschland-seit-1935/. Accessed 21 Jan 2022.

  • Bokdam, J., & Wallis de Vries, M. F. (1992). Forage quality as a limiting factor for cattle grazing in isolated Dutch nature reserves. Conservation Biology, 6, 399–408.

    Article  Google Scholar 

  • Boob, M., Elsaesser, M., Thumm, U., et al. (2019). Harvest time determines quality and usability of biomass from lowland hay meadows. Agriculture, 9(9), 198.

    Article  CAS  Google Scholar 

  • Bourgault, M., Brand, J., Tausz-Posch, S., et al. (2017). Yield, growth and grain nitrogen response to elevated CO2 in six lentil (Lens culinaris) cultivars grown under Free Air CO2 Enrichment (FACE) in a semi-arid environment. European Journal of Agronomy, 87, 50–58. https://doi.org/10.1016/j.eja.2017.05.003

    Article  CAS  Google Scholar 

  • Bovolenta, S., Spanghero, M., Dovier, S., et al. (2008). Chemical composition and net energy content of alpine pasture species during the grazing season. Animal Feed Science and Technology, 140, 164–177.

    Article  CAS  Google Scholar 

  • Britt, J. H., Cushman, R. A., Dechow, C. D., et al. (2018). Invited review: Learning from the future – A vision for dairy farms and cows in 2067. Journal of Dairy Science, 101(5), 3722–3741. https://doi.org/10.3168/jds.2017-14025

    Article  CAS  PubMed  Google Scholar 

  • Budak, H., Kantar, M., & Kurtoglu, K. Y. (2013). Drought tolerance in modern and wild wheat. The Scientific World Journal, 2013, 548246. https://doi.org/10.1155/2013/548246

    Article  PubMed  PubMed Central  Google Scholar 

  • Buiatti, M., Esquinas-Alcázar, J., Lazzerini, G., et al. (2010). Biodiversity and ecosystems. In AAVV. Food policy and sustainability. SlowFood.

    Google Scholar 

  • Burgess, M. A. (1994). Cultural responsibility in the preservation of local economic plant resources. Biodiversity and Conservation, 3, 126–136.

    Article  Google Scholar 

  • Burney, J. A., Davis, S. J., & Lobell, D. B. (2010). Greenhouse gas mitigation by agricultural intensification. https://doi.org/10.1073/pnas.0914216107

    Book  Google Scholar 

  • Camacho-Henriquez, A., Kraemer, F., Galluzzi, G., et al. (2016). Decentralized collaborative plant breeding for utilization and conservation of neglected and underutilized crop genetic resources. In Advances in plant breeding strategies: Breeding, biotechnology and molecular tools (Vol. 1, pp. 25–61).

    Google Scholar 

  • Chen, Y. S., & Chang, C. H. (2013). Greenwash and green trust: The mediation effects of green consumer confusion and green perceived risk. Journal of Business Ethics, 114, 489–500.

    Article  Google Scholar 

  • Cheng, A., Mayes, S., Dalle, G., et al. (2017). Diversifying crops for food and nutrition security – A case of teff. Biological Reviews, 92(1), 188–198. https://doi.org/10.1111/BRV.12225

    Article  PubMed  Google Scholar 

  • Chilla, T., Fink, B., Balling, R., et al. (2020). The EU food label ‘protected geographical indication’: Economic implications and their spatial dimension. Sustainability, 12(14), 5503. https://doi.org/10.3390/SU12145503

    Article  CAS  Google Scholar 

  • Chishakwe, N. E. (2008). The role of policy in the conservation and extended use of underutilised plant species: A cross-national policy analysis. N. 31 p. ISBN: 978-92-9043-782-6.

    Google Scholar 

  • Clark, M. A., Domingo, N. G. G., Colgan, K., et al. (2020). Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science, 370(6517), 705–708. https://doi.org/10.1126/SCIENCE.ABA7357/SUPPL_FILE/ABA7357_DATAS3.ZIP

    Article  CAS  PubMed  Google Scholar 

  • Collinson, S. T., Azam-Ali, S. N., Chavula, K. M., et al. (1996). Growth, development and yield of bambara groundnut (Vigna subterranea) in response to soil moisture. Journal of Agricultural Science, 126, 307–318.

    Article  Google Scholar 

  • Collinson, S. T., Clawson, E. J., Azam-Ali, S. N., et al. (1997). Effect of soil moisture deficits on the water relations of bambara groundnut (Vigna subterranea L. Verdc.). Journal of Experimental Botany, 48, 877–884.

    Article  CAS  Google Scholar 

  • Commission on Sustainable Agriculture and Climate Change (2012). Achieving food security in the face of climate change. Final report from the Commission on Sustainable Agriculture and Climate Change Commission Secretariat. www.ccafs.cgiar.org/commission

  • Cordain, L., Eaton, S. B., Sebastian, A., et al. (2005). Origins and evolution of the Western diet: Health implications for the 21st century. The American Journal of Clinical Nutrition, 81(2), 341–354. https://doi.org/10.1093/AJCN.81.2.341

    Article  CAS  PubMed  Google Scholar 

  • Cristofano, F., El-Nakhel, C., & Rouphael, Y. (2021). Biostimulant substances for sustainable agriculture: Origin, operating mechanisms and effects on cucurbits, leafy greens, and nightshade vegetables species. Biomolecules, 11, 1103. https://doi.org/10.3390/biom11081103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cusworth, G., Garnett, T., & Lorimer, J. (2021). Legume dreams: The contested futures of sustainable plant-based food systems in Europe. Global Environmental Change, 69, 102321. https://doi.org/10.1016/j.gloenvcha.2021.102321

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantas, E. F., Freitas, A. D., Lyra, M. D., et al. (2019). Biological fixation, transfer and balance of nitrogen in passion fruit (Passiflora edulis Sims) orchard intercropped with different green manure crops. Australian Journal of Crop Science, 13(03), 465–471.

    Article  CAS  Google Scholar 

  • Das, S., Khound, R., Santra, M., et al. (2019). Beyond bird feed: Proso millet for human health and environment. Agriculture, 9(3), 64. https://doi.org/10.3390/agriculture9030064

    Article  CAS  Google Scholar 

  • Dawson, I. K., Hedley, P. E., Guarino, L., et al. (2009). Does biotechnology have a role in the promotion of underutilised crops? Food Policy, 34(4), 319–328. https://doi.org/10.1016/J.FOODPOL.2009.02.003

    Article  Google Scholar 

  • Dien, B. S., Mitchell, R. B., Bowman, M. J., et al. (2018). Bioconversion of pelletized big bluestem, switchgrass, and low-diversity grass mixtures into sugars and bioethanol. Frontiers in Energy Research, 6, 129. https://doi.org/10.3389/fenrg.2018.00129

    Article  Google Scholar 

  • Diffenbaugh, N., Krupke, C. H., White, M. A., et al. (2008). Global warming presents new challenges for maize pest management. Environmental Research Letters, 3(4). https://doi.org/10.1088/1748-9326/3/4/044007

  • Dong, L., Si, T., Li, Y.-E., et al. (2021). The effect of conservation tillage in managing climate change in arid and semiarid areas—A case study in Northwest China. Mitigation and Adaptation Strategies for Global Change, 26(4), 17. https://doi.org/10.1007/s11027-021-09956-3

    Article  Google Scholar 

  • Dubey, P. K., Singh, G. S., & Abhilash, P. C. (2020). Adaptive agronomic practices for sustaining food production. In Adaptive Agricultural Practices (Springer briefs in environmental science). Springer. https://doi.org/10.1007/978-3-030-15519-3_2

    Chapter  Google Scholar 

  • Dulloo, M., Drucker, A., Gaisberger, H., et al. (2016). Mainstreaming agrobiodiversity in sustainable food systems: Scientific foundations for an agrobiodiversity index – Summary (pp. 22–25). Bioversity International.

    Google Scholar 

  • Dwivedi, S. L., Ceccarelli, S., Blair, M. W., et al. (2016). Landrace germplasm for improving yield and abiotic stress adaptation. Trends in Plant Science, 21(1), 31–42. https://doi.org/10.1016/j.tplants.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  • Ebert, A. W. (2014). Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability, 6, 319–335. https://doi.org/10.3390/su6010319

    Article  Google Scholar 

  • Ehrlich, P. R., & Ehrlich, A. H. (1981). Extinction: The causes and consequences of the disappearance of species (pp. 72–98). Random House.

    Google Scholar 

  • Ekanayake, S., Nair, B., Jansz, E. R., et al. (2003). Effect of processing on the protein nutritional value of Canavalia gladiate seeds. Die Nahrung, 47(4), 256–260.

    Article  CAS  PubMed  Google Scholar 

  • Erjavec, E., Lovec, M., & Erjavec, K. (2015). From “Greening” to “Greenwash”: the drivers and discourses of CAP 2020 reform. In: J.F. Swinnen (Ed.), The Political Economy of the 2014-2020 Common Agricultural Policy: An Imperfect Storm. Rowman & Littlefield, London and CEPS, Brussels, ISBN: 978-1-78348-484-3, p. 215–244.

    Google Scholar 

  • Eshel, G., Shepon, A., Makov, T., et al. (2014). Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 11996–12001. https://doi.org/10.1073/pnas.1402183111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EURISCO. (2022). European search catalogue for plant genetic resources. Available at: https://eurisco.ipk-gatersleben.de/. Accessed 5 Feb 2022.

  • European Commission. (2021). The common agricultural policy at a glance: The common agricultural policy supports farmers and ensures Europe’s food security. https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en. Accessed 31 Jan 2022.

  • Eyzaguirre, P., Padulosi, S., & Hodgkin, T. (1999). IPGRI’s strategy for neglected and underutilised species and the human dimension of agrobiodiversity. In S. Padulosi (Ed.), Priority setting for underutilised and neglected plant species of the Mediterranean region. Report of the IPGRI conference, 9–11. February 1998, ICARDA, Aleppo. Syria. International Plant Genetic Resources Institute.

    Google Scholar 

  • Fahey, J. W. (2005). Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Phytochemistry, 47, 123–157.

    Google Scholar 

  • Fanzo, J., Haddad, L., Schneider, K. R., et al. (2021). Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals. Food Policy, 104, 102163. https://doi.org/10.1016/J.FOODPOL.2021.102163

    Article  Google Scholar 

  • FAO. (1999). Agricultural biodiversity. In Multifunctional Character of Agriculture and Land Conference, Maastricht, 12–17 Sept 1999.

    Google Scholar 

  • FAO. (2001). International treaty on plant genetic resource for food and agriculture, Rome.

    Google Scholar 

  • FAO. (2010a). Proceedings of the International Scientific Symposium Biodiversity and Sustainable diets united against hunger. 3–5 Nov 2010. Available in: https://www.fao.org/3/i3004e/i3004e00.pdf

  • FAO (2010b). The second report on the state of the world’s plant genetic resources for food and agriculture (pp. 183–201). Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • FAO. (2018a). Global livestock environmental assessment model. http://www.fao.org/fileadmin/user_upload/gleam/docs/GLEAM_2.0_Model_description.pdf

  • FAO. (2018b). The future of Food and Agriculture: Alternative pathways to 2050 | Knowledge for policy. https://knowledge4policy.ec.europa.eu/publication/future-food-agriculture-alternative-pathways-2050_en

  • FAO. (2019a). The state of the world’s biodiversity for food and agriculture. In J. Bélanger & D. Pilling (Eds.), FAO commission on genetic resources for food and agriculture assessments. 572 pp.

    Google Scholar 

  • FAO (2019b). Mountain agriculture: Opportunities for harnessing zero hunger in Asia. Food and Agriculture Organization of the United Nations, Bangkok.

    Google Scholar 

  • FAO. (2021). The state of food and agriculture 2021. https://doi.org/10.4060/CB4476EN.

  • FAOSTAT, Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/faostat/en/#data/QCL. Accessed 25 Jan 2022.

  • Ferchichi, S., Hessini, K., Dell Aversana, E., et al. (2018). Hordeum vulgare and Hordeum maritimum respond to extended salinity stress displaying different temporal accumulation pattern of metabolites. Functional Plant Biology, 45(11), 1096–1109.

    Article  CAS  PubMed  Google Scholar 

  • Finell, M. (2003). The use of reed canary grass (Phalaris arundinacea) as a short fibre raw material for the pulp and paper industry (Dissertation). Swedish University of Agricultural Sciences.

    Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., et al. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C. H., Lam, H. M., Nguyen, H. T., et al. (2016). Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2, 16112.

    Article  PubMed  Google Scholar 

  • Fraj, M. B., Al-Dakheel, A. J., McCann, I. R., et al. (2013). Selection of high yielding and stable safflower (Carthamus tinctorius L.) genotypes under salinity stress. Agricultural Science Research Journal, 3, 273–283.

    Google Scholar 

  • Fraj, M. B., Al-Dakheel, A. J., McCann, I. R., et al. (2014). Selection of salt-tolerant triticale (x Triticum secale Wittmack) genotypes for grain and forage end-uses. American-Eurasian Journal of Agricultural and Environmental, 14, 445–454.

    Google Scholar 

  • Freitas, R. M., Dombroski, J. L., Freitas, F. C., et al. (2019). Water use of cowpea under deficit irrigation and cultivation systems in semi-arid region. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(4), 271–276.

    Article  Google Scholar 

  • Galmés, J., Conesa, M. À., Ochogavía, J. M., Perdomo, J. A., Francis, D. M., Ribas-Carbó, M., Savé, R., Flexas, J., Medrano, H., & Cifre, J. (2011). Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell & Environment, 34, 245–260. https://doi.org/10.1111/j.1365-3040.2010.02239.x

  • Gatsios, A., Ntatsi, G., Celi, L., et al. (2019). Nitrogen nutrition optimization in organic greenhouse tomato through the use of legume plants as green manure or intercrops. Agronomy, 9, 766. https://doi.org/10.3390/agronomy9110766

    Article  CAS  Google Scholar 

  • Gatsios, A., Ntatsi, G., Yfantopoulos, D., et al. (2021). Effects of different organic soil amendments on nitrogen nutrition and yield of organic greenhouse tomato crop. Nitrogen, 2, 347–358. https://doi.org/10.3390/nitrogen2030024

    Article  CAS  Google Scholar 

  • Gatsios, A., Ntatsi, G., Celi, L., et al. (2021a). Impact of legumes as a pre-crop on nitrogen nutrition and yield in organic greenhouse tomato. Plants, 10, 468. https://doi.org/10.3390/plants10030468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatsios, A., Ntatsi, G., Celi, L., et al. (2021b). Legume-based mobile green manure can increase soil nitrogen availability and yield of organic greenhouse tomatoes. Plants, 10, 2419. https://doi.org/10.3390/plants10112419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GENESYS. (2022). The global gateway to genetic resources. Available online at: https://www.genesys-pgr.org. Accessed 5 Feb 2022.

  • Ghafoor, I., Habib-ur-Rahman, M., Ali, M., et al. (2021). Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environmental Science and Pollution Research, 28, 43528–43543. https://doi.org/10.1007/s11356-021-13700-4

    Article  CAS  PubMed  Google Scholar 

  • Grass, S. (2004). Utilisation of grass for production of fibres, protein, and energy. In Biomass and agriculture. Sustainability, markets and policies (pp. 169–177). OECD.

    Google Scholar 

  • Gregory, P. J., Mayes, S., Hui, C. H., et al. (2019). Crops For the Future (CFF): An overview of research efforts in the adoption of underutilised species. Planta, 250, 979–988. https://doi.org/10.1007/s00425-019-03179-2

    Article  CAS  PubMed  Google Scholar 

  • Gruère, G. P., Giuliani, A., & Smale, M. (2008). Marketing underutilized plant species for the poor: A conceptual framework. In Agrobiodiversity Conservation and Economic Development (pp. 86–105). Routledge, London, UK.

    Google Scholar 

  • Guida, G., Sellami, M. H., Mistretta, C., et al. (2017). Agronomical, physiological and fruit quality responses of two italian long-storage tomato landraces under rain-fed and full irrigation conditions. Agricultural Water Management, 180, 126–135.

    Article  Google Scholar 

  • Habiyaremye, C., Barth, V., Highet, K., et al. (2017). Phenotypic responses of twenty diverse proso millet (Panicum miliaceum L.) accessions to irrigation. Sustainability, 9, 389.

    Article  Google Scholar 

  • Hadavi, E., & Ghazijahani, N. (2018). Closed and semi-closed systems in agriculture. In E. Lichtfouse (Ed.), Sustainable agriculture reviews 33. Springer. https://doi.org/10.1007/978-3-319-99076-7_10

    Chapter  Google Scholar 

  • Haddad, L., Hawkes, C., Webb, P. et al. (2016). A new global research agenda for food. Nature 540, 30–32. https://doi.org/10.1038/540030a

  • Hadebe, S., Modi, A. T., & Mabhaudhi, T. (2017). Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in Sub-Saharan Africa. Journal of Agronomy and Crop Science, 203, 177–191.

    Article  CAS  Google Scholar 

  • Havlin, J. L. (2020). Soil: Fertility and nutrient management. In Landscape and land capacity (pp. 251–265). CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  • Hawes, C., Haughton, A. J., Bohan, D. A., et al. (2009). Functional approaches for assessing plant and invertebrate abundance patterns in arable systems. Basic and Applied Ecology, 10, 34–47.

    Article  Google Scholar 

  • Hawes, C., Begg, G. S., Iannetta, P., et al. (2016). A whole-systems approach for assessing measures to improve arable ecosystem sustainability. Ecosystem Health and Sustainability, 2, e01252.

    Article  Google Scholar 

  • Hermansen, J., Jørgensen, U., Lærke, P. E., et al. (2017). Green biomass - protein production through bio-refining. DCA Report.

    Google Scholar 

  • Holm, L., & Møhl, M. (2000). The role of meat in everyday food culture: An analysis of an interview study in Copenhagen. Appetite, 34(3), 277–283. https://doi.org/10.1006/APPE.2000.0324

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Xu, C., Ridoutt, B. G., et al. (2017). Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production, 159, 171–179.

    Article  Google Scholar 

  • Hunter, M. C., Smith, R. G., Schipanski, M. E., et al. (2017). Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience, 67(4), 386–391. https://doi.org/10.1093/BIOSCI/BIX010

    Article  Google Scholar 

  • Hunter, D., Borelli, T., Beltrame, D. M. O., et al. (2019). The potential of neglected and underutilized species for improving diets and nutrition. Planta, 250(3), 709–729. https://doi.org/10.1007/s00425-019-03169-4

    Article  CAS  PubMed  Google Scholar 

  • Huppmann, D., Rogelj, J., Kriegler, E., Krey, V., & Riahi, K. (2018). A new scenario resource for integrated 1.5 °C research. In Nature Climate Change (Vol. 8, Issue 12, pp. 1027–1030). Nature Publishing Group. https://doi.org/10.1038/s41558-018-0317-4

  • Ibeanu, V. N., Edeh, C. G., & Ani, P. N. (2020). Evidence-Based Strategy for Prevention of Hidden Hunger among Adolescents in a Suburb of Nigeria. BMC Public Health, 20(1), 1–10. https://doi.org/10.1186/s12889-020-09729-8

  • Imathiu, S. (2021). Neglected and underutilized cultivated crops with respect to indigenous African leafy vegetables for food and nutrition security. Journal of Food Security, 9(3), 115–125.

    Article  Google Scholar 

  • International assessment of agricultural knowledge, science and technology for development. (2009). Agriculture at a crossroads: A global report. Island Press.

    Google Scholar 

  • IPCC. (2019). Climate change and land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. www.ipcc.ch

  • Jahn, S. A. A., Musnad, H. A., & Burgstaller, H. (1986). The tree that purifies water: Cultivating multipurpose Moringaceae in the Sudan. Unasylva, 38, 23–28.

    Google Scholar 

  • Jamnadass, R., Mumm, R. H., Hale, I., et al. (2020). Enhancing African orphan crops with genomics. Nature Genetics, 52, 356–360. https://doi.org/10.1038/s41588-020-0601-x

    Article  CAS  PubMed  Google Scholar 

  • Jansen, M., Guariguata, M. R., Raneri, J. E., et al. (2020). Food for thought: The underutilized potential of tropical tree-sourced foods for 21st century sustainable food systems. People and Nature, 2(4), 1006–1020.

    Article  Google Scholar 

  • Jungers, J. M., Fargione, J. E., Sheaffer, C. C., et al. (2013). Energy potential of biomass from conservation grasslands in Minnesota, USA. PLoS One, 8(4), e61209. https://doi.org/10.1371/journal.pone.0061209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamel, S. H., Zaki, Z. M., & Kassim, J. (2018). The effectiveness of Psophocarpus tetragonolobus’s seed as turbidity removal. International Journal of Engineering and Technology, 7, 144–146.

    Article  CAS  Google Scholar 

  • Kamenya, S. N., Mikwa, E. O., Song, B., & Odeny, D. A. (2021). Genetics and breeding for climate change in orphan crops. Theoretical and Applied Genetics, 134, 1787–1815. https://doi.org/10.1007/s00122-020-03755-1

    Article  PubMed  Google Scholar 

  • Kanatas, P. (2020). Mini-review: The role of crop rotation, intercropping, sowing dates and increased crop density towards a sustainable crop and weed management in arable crops. Agraarteadus, 31(1), 22–27. https://doi.org/10.15159/jas.20.11

    Article  Google Scholar 

  • Karavidas, I., Ntatsi, G., Vougeleka, V., et al. (2022). Agronomic practices to increase the yield and quality of common bean (Phaseolus vulgaris L.): A systematic review. Agronomy, 12, 271. https://doi.org/10.3390/agronomy12020271

    Article  CAS  Google Scholar 

  • Karkanis, A., Ntatsi, G., Lepse, L., et al. (2018). Faba bean cultivation – Revealing novel managing practices for more sustainable and competitive European cropping systems. Frontiers in Plant Science, 9, 1115. https://doi.org/10.3389/fpls.2018.01115

    Article  PubMed  PubMed Central  Google Scholar 

  • Karkanis, A., Polyzos, N., Kompocholi, M., et al. (2022). Rock samphire, a candidate crop for saline agriculture: Cropping practices, chemical composition and health effects. Applied Sciences, 12, 737. https://doi.org/10.3390/app12020737

    Article  CAS  Google Scholar 

  • Karunaratne, A. S., Walker, S., & Azam-Ali, S. N. (2015). Assessing the productivity and resource-use efficiency of underutilised crops: Towards an integrative system. Agricultural Water Management, 147, 129–134.

    Article  Google Scholar 

  • Katschnig, D., Broekman, R. A., & Rozema, J. (2013). Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environmental and Experimental Botany, 92, 32–42.

    Article  CAS  Google Scholar 

  • Keatinge, J. D. H., Waliyar, F., Jamnadass, R. H., et al. (2010). Re-learning old lessons for the future of food-by bread alone no longer: Diversifying diets with fruit and vegetables. Crop Science, 50, 51–62.

    Article  Google Scholar 

  • Khoury, C. K., Bjorkman, A. D., Dempewolf, H., et al. (2014). Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences of the United States of America, 111, 4001–4006. https://doi.org/10.1073/pnas.1313490111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, C., Richardson, M., McEniry, J., et al. (2013). Potential use of fibrous grass silage press-cake to minimise shrinkage cracking in low-strength building materials. Biosystems Engineering, 115, 203–210.

    Article  Google Scholar 

  • Koellner, T., De Baan, L., Beck, T., et al. (2013). UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. The International Journal of Life Cycle Assessment, 18, 1188–1202.

    Article  Google Scholar 

  • Koidou, M., Mountousis, I., Dotas, V., et al. (2019). Temporal variations of herbage production and nutritive value of three grasslands at different elevation zones regarding grazing needs and welfare of ruminants. Archives Animal Breeding, 62, 215–226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo, C. G., Chen, H. M., & Sun, H. C. (1992). Membrane thermostability and heat tolerance of vegetable leaves. In Adaptation of food crops to temperature and water stress (pp. 160–168). AVRDC - The World Vegetable Center.

    Google Scholar 

  • Karunaratne, A. S., Walker, S., & Azam-Ali, S. N. (2015). Assessing the productivity and resource-use efficiency of underutilised crops: Towards an integrative system. Agricultural Water Management, 147, 129–134.

    Google Scholar 

  • Lakew, B., Eglinton, J., Henry, R. J., Baum, M., Grando, S., & Ceccarelli, S. (2011). The potential contribution of wild barley (Hordeum vulgare ssp. spontaneum) germplasm to drought tolerance of cultivated barley (H. vulgare ssp. vulgare). Field Crops Research, 120(1), 161–168.

    Google Scholar 

  • Lazcano, C., Zhu-Barker, X., & Decock, C. (2021). Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: A review. Microorganisms, 9(5), 983. https://doi.org/10.3390/microorganisms9050983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewandowski, I., Clifton-Brown, J. C., Andersson, B., et al. (2003). Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agronomy Journal, 95, 1274–1280.

    Article  Google Scholar 

  • Li, X., & Siddique, K. H. M. (2020). Future smart food: Harnessing the potential of neglected and underutilized species for zero hunger. Maternal and Child Nutrition, 16(S3), 1–22. https://doi.org/10.1111/mcn.13008

    Article  Google Scholar 

  • Li, J., Wang, Y. K., Guo, Z., et al. (2020a). Effects of conservation tillage on soil physicochemical properties and crop yield in an arid loess plateau, China. Scientific Reports, 10(1), 4716. https://doi.org/10.1038/s41598-020-61650-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Yadav, R., & Siddique, K. H. M. (2020b). Neglected and underutilized crop species: The key to improving dietary diversity and fighting hunger and malnutrition in Asia and the Pacific. Frontiers in Nutrition, 7, 593711. https://doi.org/10.3389/fnut.2020.593711

  • Liakos, K. G., Busato, P., Moshou, D., et al. (2018). Machine learning in agriculture: A review. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082674

  • Liang, J., Chen, X., Guo, P., et al. (2021). Grafting improves nitrogen-use efficiency by regulating the nitrogen uptake and metabolism under low-nitrate conditions in cucumber. Scientia Horticulturae, 289, 110454. https://doi.org/10.1016/j.scienta.2021.110454

    Article  CAS  Google Scholar 

  • Lienhardt, T., Black, K., Saget, S., et al. (2019a). Just the tonic! Legume biorefining for alcohol has the potential to reduce Europe’s protein deficit and mitigate climate change. Environment International, 130, 104870. https://doi.org/10.1016/j.envint.2019.05.064

    Article  PubMed  Google Scholar 

  • Lienhardt, T., Black, K., Saget, S., et al. (2019b). Data for life cycle assessment of legume biorefining for alcohol. Data in Brief, 25. https://doi.org/10.1016/j.dib.2019.104242

  • Linnemann, A. R., & Azam-Ali, S. (1993). Bambara groundnut (Vigna subterranea). In J. T. William (Ed.), Pulses and vegetables (pp. 13–57). Chapman and Hall – CRC Press, Boca Raton, Florida, USA.

    Google Scholar 

  • Lowe, N. M. (2021). The global challenge of hidden hunger: Perspectives from the field. Proceedings of the Nutrition Society, 80(3), 283–289. https://doi.org/10.1017/S0029665121000902

    Article  PubMed  Google Scholar 

  • Mabhaudhi, T., O’Reilly, P., Walker, S., et al. (2016). Opportunities for underutilised crops in Southern Africa’s post–2015 development agenda. Sustainability, 8(4), 302.

    Article  Google Scholar 

  • Mabhaudhi, T., Chimonyo, V. G. P., Hlahla, S., et al. (2019). Prospects of orphan crops in climate change. Planta, 250(3). https://doi.org/10.1007/s00425-019-03129-y

  • Mafakheri, M., & Kordrostami, M. (2020). Newly revealed promising gene pools of neglected brassica species to improve stress-tolerant crops. In M. Hasanuzzaman (Ed.), The plant family Brassicaceae. Springer. https://doi.org/10.1007/978-981-15-6345-4_4

    Chapter  Google Scholar 

  • Mammadov, J., Buyyarapu, R., Guttikonda, S. K., et al. (2018). Wild relatives of maize, rice, cotton, and soybean: Treasure troves for tolerance to biotic and abiotic stresses. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00886

  • Mandizvo, T., Odindo, A. O., & Mashilo, J. (2021). Citron watermelon potential to improve crop diversification and reduce negative impacts of climate change. Sustainability, 13(4), 2269. https://doi.org/10.3390/su13042269

    Article  Google Scholar 

  • Massawe, F., Mayes, S., & Cheng, A. (2016). Crop diversity: An unexploited treasure trove for food security. Trends in Plant Science, 21, 365–368. https://doi.org/10.1016/j.tplants.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  • Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., et al. (2019). Global warming of 1.5°C An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty Summary for Policymakers Edited by Science Officer Science Assistant Graphics Officer Working Group I Technical Support Unit. https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf

  • Matthews, N. E., Stamford, L., & Shapira, P. (2019). Aligning sustainability assessment with responsible research and innovation: Towards a framework for Constructive Sustainability Assessment. Sustainable Production and Consumption, 20, 58–73. https://doi.org/10.1016/j.spc.2019.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayes, S., Massawe, F. J., Alderson, P. G., et al. (2012). The potential for underutilized crops to improve security of food production. Journal of Experimental Botany, 63(3), 1075–1079. https://doi.org/10.1093/JXB/ERR396

    Article  CAS  PubMed  Google Scholar 

  • Mecha, E., Natalello, S., Carbas, B., et al. (2021). Disclosing the nutritional quality diversity of Portuguese common beans—The missing link for their effective use on protein quality breeding programmes. Agronomy, 11, 221. https://doi.org/10.3390/agronomy11020221

    Article  CAS  Google Scholar 

  • Mejias, J. H., Salazar, F., Pérez-Amaro, L., et al. (2021). Nanofertilizers: A cutting-edge approach to increase nitrogen use efficiency in grasslands. Frontiers in Environmental Science, 9, 635114. https://doi.org/10.3389/fenvs.2021.635114

    Article  Google Scholar 

  • Meldrum G., Sthapit S., Rojas W., et al. (2016) Methodology mapping for resilient production systems: Approaches and results from surveys in Bolivia, India, and Nepal. Proceedings of the 3rd International Conference on Neglected and Underutilized Species: For a Food-Secure Africa, Accra, Ghana, 25–27 September 2013, pp. 108–112.

    Google Scholar 

  • Mentis, M. (2020). Environmental rehabilitation of damaged land. Forest Ecosystems, 7(1). https://doi.org/10.1186/s40663-020-00233-4

  • Millennium Ecosystem Assessment (MEA). (2005). Ecosystems and human well-being: Synthesis. Island Press, Washington, DC, 137p. https://www.millenniumassessment.org/documents/document.356.aspx.pdf

  • Mintel. (2021). Global consumer trends 2022. Available in: https://downloads.mintel.com/private/r3Mts/files/889468/

  • Mládek, J., Hejcman, M., Hejduk, S., et al. (2011). Community seasonal development enables late defoliation without loss of forage quality in semi-natural grasslands. Folia Geobotanica, 46, 17–34.

    Article  Google Scholar 

  • Mndzebele, B., Ncube, B., Fessehazion, M. K., et al. (2020). Effects of cowpea-amaranth intercropping and fertiliser application on soil phosphatase activities, available soil phosphorus, and crop growth response. Agronomy, 10(1), 79. https://doi.org/10.3390/agronomy10010079

    Article  CAS  Google Scholar 

  • Morris, J. B. (2009). Morphological and reproductive characterization in hyacinth bean, Lablab purpureus (L.) sweet germplasm with clinically proven nutraceutical and pharmaceutical traits for use as a medicinal food. Journal of Dietary Supplements, 6(3), 263–279.

    Article  PubMed  Google Scholar 

  • Mos, M., Banks, S. W., Nowakowski, D. J., et al. (2013). Impact of Miscanthus x giganteus senescence times on fast pyrolysis bio-oil quality. Bioresource Technology, 129, 335–342.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, N., Gerber, J., Johnston, M., et al. (2012). Closing yield gaps through nutrient and water management. Nature, 490, 254–257. https://doi.org/10.1038/nature11420

    Article  CAS  PubMed  Google Scholar 

  • Murevanhema, Y. Y., & Jideani, V. A. (2013). Potential of bambara groundnut (Vigna subterranea (L.) verdc) milk as a probiotic beverage-a review. Critical Reviews in Food Science and Nutrition, 53(9), 954–967.

    Article  PubMed  Google Scholar 

  • Murthy, H. N., & Bapat, V. A. (2020). Importance of underutilized fruits and nuts. In H. N. Murthy & V. A. Bapat (Eds.), Bioactive compounds in underutilized fruits and nuts (pp. 3–19). Springer Nature. https://doi.org/10.1007/978-3-030-30182-8

    Chapter  Google Scholar 

  • Naeem, M., Khan, M. M., & Morris, J. (2009). Agrobotanical attributes, nitrogen-fixation, enzyme activities and nutraceuticals of hyacinth bean (Lablab purpureus L.): A bio-functional medicinal legume. American Journal of Plant Physiology, 4, 58–69.

    Article  CAS  Google Scholar 

  • Nandal, U., & Bhardwaj, R. L. (2014). The role of underutilized fruits in nutritional and economic security of tribals: A review. Critical Reviews in Food Science and Nutrition, 54, 880–890. https://doi.org/10.1080/10408398.2011.616638

  • Nc’Nean Distillery. (2021). Sustainability report. https://ncnean.com/pages/sustainability. Accessed 31 Jan 2022.

  • Ndjiondjop, M. N., Manneh, B., Cissoko, M., et al. (2010). Drought resistance in an interspecific backcross population of rice (Oryza spp.) derived from the cross WAB56-104 (O. sativa) x CG14 (O. glaberrima). Plant Science, 179, 364–373.

    Article  CAS  Google Scholar 

  • Nganga, S. (2014). African leafy vegetables and household wellbeing in Kenya: A disaggregation by gender. Current Research Journal of Social Sciences, 6(4), 82–94.

    Article  Google Scholar 

  • Nielsen, D. C., & Vigil, M. F. (2017). Water use and environmental parameters influence proso millet yield. Field Crops Research, 212, 34–44.

    Article  Google Scholar 

  • Ntatsi, G., Karkanis, A., Yfantopoulos, D., et al. (2018a). Evaluation of the field performance, nitrogen fixation efficiency and competitive ability of pea landraces grown under organic and conventional farming systems. Archives of Agronomy and Soil Science, 65, 294–307. https://doi.org/10.1080/03650340.2018.1501155

    Article  CAS  Google Scholar 

  • Ntatsi, G., Karkanis, A., Yfantopoulos, D., et al. (2018b). Impact of variety and farming practices on growth, yield, weed flora and symbiotic nitrogen fixation in faba bean cultivated for fresh seed production. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 68, 619–630. https://doi.org/10.1080/09064710.2018.1452286

    Article  Google Scholar 

  • O’Keeffe, S., Schulte, R., Sanders, J., et al. (2011). I. Technical assessment for first generation green biorefinery (GBR) using mass and energy balances: Scenarios for an Irish GBR blueprint. Biomass and Bioenergy, 35, 4712–4723.

    Article  Google Scholar 

  • Obasi, M., & Ezedinma, F. (1991). Floral biology of Kerstings groundnut (Kerstingiella geocarpa harms). Ghana Journal of Agricultural Science, 24–27, 145–149.

    Google Scholar 

  • Oelke, E. A., Oplinger, E. S., Teynor, T. M., et al. (1992). Safflower. Alternative crops field manual. Universities of Wisconsin Cooperative Extension Service, University of Minnesota Center for Alternative Plant and Animal Products & Minnesota Extension Service. http://www.hort.purdue.edu/newcrop/afcm/safflower.html

  • Onyekachi, O. G., Boniface, O. O., Gemlack, N. F., et al. (2019). The effect of climate change on abiotic plant stress: A review. In A. De Oliveira (Ed.), Abiotic and biotic stress in plants. 13pp. Available at: https://www.intechopen.com/chapters/64791. Accessed 27 Jan 2022.

    Google Scholar 

  • Oyelakin, O. S., & Olaniyi, O. W. (2019). Effects of intercropping maize (Zea mays L.) with Jack beans (Canavalia ensiformis L.) at different spacing and weeding regimes on crops productivity. International Journal of Agricultural and Biosystems Engineering, 13(3), 61–65.

    Google Scholar 

  • Padulosi, S., Eyzaquirre, P., & Hodgkin, T. (1999). Challenges and strategies in promoting conservation and use of neglected and underutilized crop species. In J. Janick (Ed.), Perspectives on new crops and new uses (p. 140). ASHS Press.

    Google Scholar 

  • Padulosi, S., Hodgkin, T., Williams, J., & Haq, N. (2002). 30 underutilized crops: trends, challenges and opportunities in the 21st century. In: Managing plant genetic diversity (eds J.M.M. Engels, V. Ramanatha Rao, A.H.D. Brown and M.T. Jackson) 323–487

    Google Scholar 

  • Padulosi, S., Heywood, V., Hunter, D., et al. (2011). Underutilized species and climate change: Current status and outlook. In S. S. Yadav, R. J. Redden, J. L. Hatfield, H. Lotze-Campen, & A. E. Hall (Eds.), Crop adaptation to climate change. John Wiley & Sons, Ltd.: Blackwell Publishing Ltd.

    Google Scholar 

  • Padulosi, S., Thompson, J., & Rudebjer, P. (2013). Fighting poverty, hunger and malnutrition with neglected and underutilised species (NUS): Needs, challenges and the way forward. Bioversity International 60 p. https://cgspace.cgiar.org/handle/10568/68927

  • Palou, E., López-Malo, A., Barbosa-Canovas, G. V., et al. (2020). High-pressure preservation of foods. In Handbook of food preservation (pp. 843–872). CRC Press. https://doi.org/10.1201/9780429091483-54

    Chapter  Google Scholar 

  • Parihar, A. K., Basandrai, A. K., Kushwaha, K. P., et al. (2018). Targeting test environments and rust-resistant genotypes in lentils (Lens culinaris) by using heritability-adjusted biplot analysis. Crop & Pasture Science, 69, 1113–1125.

    Article  CAS  Google Scholar 

  • Parvin, S., Uddin, S., Bourgault, M., et al. (2019a). Effect of heat wave on N2 fixation and N remobilization of lentil (Lens culinaris MEDIK) grown under Free Air CO2 Enrichment in a Mediterranean-type environment. Plant Biology, 22(S1), 123–132.

    Article  PubMed  Google Scholar 

  • Parvin, S., Uddin, S., Tausz-Posch, S., et al. (2019b). Elevated CO2 improves yield and N2 fixation but not grain N concentration of faba bean (Vicia faba L.) subjected to terminal drought. Environmental and Experimental Botany, 165, 161–173. https://doi.org/10.1016/j.envexpbot.2019.06.003

    Article  CAS  Google Scholar 

  • Petrusán, J. I., Rawel, H., & Huschek, G. (2016). Protein-rich vegetal sources and trends in human nutrition: A review. Current Topics in Peptide and Protein Research, 17, 1–19.

    Google Scholar 

  • Piñeiro, V., Arias, J., Dürr, J., et al. (2020). A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nature Sustainability, 3(10), 809–820. https://doi.org/10.1038/s41893-020-00617-y

    Article  Google Scholar 

  • Ponisio, L. C., Gonigle, L. K. M., Mace, K. C., et al. (2015). Diversification practices reduce organic to conventional yield gap. Proceedings of the Royal Society B Biological Sciences, 282, 20141396. https://doi.org/10.1098/rspb.2014.1396

    Article  PubMed Central  Google Scholar 

  • Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–992. https://doi.org/10.1126/science.aaq0216

    Article  CAS  PubMed  Google Scholar 

  • Popkin, B. M., Corvalan, C., & Grummer-Strawn, L. M. (2020). Dynamics of the double burden of malnutrition and the changing nutrition reality. The Lancet, 395(10217), 65–74. https://doi.org/10.1016/S0140-6736(19)32497-3

    Article  Google Scholar 

  • Popoola, J. O., Ojuederie, O. B., Omonhinmin, C. A., et al. (2019). Neglected and underutilized legume crops: Improvement and future prospects. In F. Shah, Z. Khan, & A. Iqbal (Eds.), Recent advances in grain crops research. IntechOpen. https://doi.org/10.5772/intechopen.87069

    Chapter  Google Scholar 

  • Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security. A review. Agronomy for Sustainable Development, 33(1), 243–255. https://doi.org/10.1007/s13593-012-0105-x

    Article  Google Scholar 

  • Profeta, A. (2019). The impact of health claims in different product categories. Journal of International Food & Agribusiness Marketing, 32(2), 123–140. https://doi.org/10.1080/08974438.2019.1599753

    Article  Google Scholar 

  • Profeta, A., Balling, R., & Enneking, U. (2006). Geschützte HerkunftsangabenStatus Quo und Entwicklung der Nutzung der Verordnung (EG) 510/06 › GJAE - German Journal of Agricultural Economics - DE. German Journal of Agricultural Economics, 55(8), 353–358. https://www.gjae-online.de/de/articles/geschutzte-herkunftsangabenstatus-quo-und-entwicklung-der-nutzung-der-verordnung-eg-510-06/

  • Profeta, A., Enneking, U., & Balling, R. (2007). Wahrnehmung von regionalen Lebensmittelspezialitäten in Deutschland – Eine deutschlandweite, repräsentative Konsumentenbefragung. Berichte Über Landwirtschaft: Zeitschrift Für Agrarpolitik Und Landwirtschaft, 85(2), 238–251.

    Google Scholar 

  • Quesada, N., Iannetta, P. P. M., White, P. J., et al. (2019). What evidence exists on the effectiveness of the techniques and management approaches used to improve the productivity of field grown tomatoes under conditions of water-, nitrogen- and/or phosphorus-deficit? A Systematic Map Protocol. Environmental Evidence, 8, 26. https://doi.org/10.1186/s13750-019-0172-4

    Article  Google Scholar 

  • Rai, K. K., Pandey, N., Meena, R. P., et al. (2021). Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. Ecotoxicology and Environmental Safety, 208, 111750. https://doi.org/10.1016/j.ecoenv.2020.111750

    Article  CAS  PubMed  Google Scholar 

  • Rao, N. K., & Shahid, M. (2016). Neglected and underutilized crops for sustainable agricultural production in marginal areas. In R. A. Hall & P. Rudebjer (Eds.), Proceeding of the 3rd international conference on neglected and under-utilized crops for food secure Africa, 25–27 September, Accra, Ghana (pp. 130–139). Bioversity International.

    Google Scholar 

  • Rao, N. K., Shahid, M., Al-Shankiti, A., & Elouafi, I. (2014). Neglected and underutilized species for food and income security in marginal environments. Acta Horticulturae, 1051, 91–104.

    Article  Google Scholar 

  • Ravelombola, W., Shi, A., & Weng, Y. (2018). Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. Theoretical and Applied Genetics, 131, 79. https://doi.org/10.1007/s00122-017-2987-0

    Article  CAS  PubMed  Google Scholar 

  • Razi, K., Bae, D.-W., & Muneer, S. (2021). Target-based physiological modulations and chloroplast proteome reveals a drought resilient rootstock in okra (Abelmoschus esculentus) genotypes. International Journal of Molecular Sciences, 22(23), 12996. https://doi.org/10.3390/ijms222312996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reif, T. M., Zikeli, S., Rieps, A. M., et al. (2021). Reviving a neglected crop: A case study on lentil (Lens culinaris Medikus subsp. culinaris) cultivation in Germany. Sustainability, 13(1), 133. https://doi.org/10.3390/SU13010133

    Article  Google Scholar 

  • Rivero, R. M., Mittler, R., Blumwald, E., et al. (2022). Developing climate-resilient crops: Improving plant tolerance to stress combination. The Plant Journal, 109, 373–389. https://doi.org/10.1111/tpj.15483

    Article  CAS  PubMed  Google Scholar 

  • Rocchi, L., Boggia, A., & Paolotti, L. (2020). Sustainable agricultural systems: A bibliometrics analysis of ecological modernization approach. Sustainability (Switzerland), 12(22), 1–16. https://doi.org/10.3390/su12229635

    Article  Google Scholar 

  • Rogelj, J. D., Shindell, K., Jiang, S., et al. (2018). Mitigation pathways compatible with 1.5°C in the context of sustainable development. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter2_Low_Res.pdf

  • Ronga, D., Caradonia, F., Vitti, A., et al. (2021). Agronomic comparisons of heirloom and modern processing tomato genotypes cultivated in organic and conventional farming systems. Agronomy, 11, 349. https://doi.org/10.3390/agronomy11020349

    Article  CAS  Google Scholar 

  • Rouphael, Y., & Colla, G. (2020a). Editorial: Biostimulants in agriculture. Frontiers in Plant Science, 1, 40. https://doi.org/10.3389/fpls.2020.00040

    Article  Google Scholar 

  • Rouphael, Y., & Colla, G. (2020b). Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy, 10, 1461. https://doi.org/10.3390/agronomy10101461

    Article  CAS  Google Scholar 

  • Rubiales, D., & Flores, F. (2020). Adaptation of one-flowered vetch (Vicia articulata Hornem.) to Mediterranean rain fed conditions. Agronomy, 10(3), 383. https://doi.org/10.3390/agronomy10030383

    Article  Google Scholar 

  • Rubiales, D., Fondevilla, S., Chen, W., et al. (2015). Achievements and challenges in legume breeding for pest and disease resistance. Critical Reviews in Plant Science, 34, 195–236. https://doi.org/10.1080/07352689.2014.898445

    Article  CAS  Google Scholar 

  • Rubiales, D., Emeran, A. A., & Flores, F. (2020). Adaptation of grass pea (Lathyrus sativus) to Mediterranean environments. Agronomy, 10(9), 1295; doi:10.3390/agronomy10091295.

    Article  Google Scholar 

  • Rubiales, D., Annicchiarico, P., Vaz Patto, M. C., & Julier, B. (2021). Legume breeding for the agroecological transition of global agri-food systems: A European perspective. Frontiers in Plant Science, 12, 782574. https://doi.org/10.3389/fpls.2021.782574

    Article  PubMed  PubMed Central  Google Scholar 

  • Russel, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (4th ed.). Hoboken Person. ISBN 9780134610993.

    Google Scholar 

  • Sabatino, L., Iapichino, G., Consentino, B. B., et al. (2020). Rootstock and arbuscular mycorrhiza combinatorial effects on eggplant crop performance and fruit quality under greenhouse conditions. Agronomy, 10, 693. https://doi.org/10.3390/agronomy10050693

    Article  CAS  Google Scholar 

  • Saini, S., Saxena, S., Samtiya, M., et al. (2021). Potential of underutilized millets as nutri-cereal: An overview. Journal of Food Science and Technology, 58, 4465–4477. https://doi.org/10.1007/s13197-021-04985-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardana, V., Mahajan, G., Jabran, K., et al. (2017). Role of competition in managing weeds: An introduction to the special issue. Crop Protection, 95, 1–7.

    Article  Google Scholar 

  • Savvas, D., & Gruda, N. (2018). Application of soilless culture technologies in the modern greenhouse industry - A review. European Journal of Horticultural Science, 83, 280–293. https://doi.org/10.17660/eJHS.2018/83.5.5

    Article  Google Scholar 

  • Scarano, A., Semeraro, T., Chieppa, M., et al. (2021). Neglected and underutilised plant species (NUS) from the Apulia Region worthy of being rescued and re-included in daily diet. Horticulturae, 7(7), 177. https://doi.org/10.3390/horticulturae7070177

    Article  Google Scholar 

  • Schlegel, P., Wyss, U., Arrigo, Y., et al. (2016). Mineral concentrations of fresh herbage from mixed grassland as influenced by botanical composition, harvest time and growth stage. Animal Feed Science and Technology, 219, 226–233.

    Article  CAS  Google Scholar 

  • Scottish Government. (2021). Cereal and oilseed rape harvest: Final. https://www.gov.scot/publications/cereal-oilseed-rape-harvest-2021-final-estimates/. Accessed 31 Jan 2022.

  • Scottish Whisky Association. (2021). Facts and figures. https://www.scotch-whisky.org.uk/insights/facts-figures/. Accessed 31 Jan 2022.

  • Shah, F., & Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability, 11, 1485. https://doi.org/10.3390/su11051485

    Article  Google Scholar 

  • Shahzad, M., Hussain, M., Jabran, K., et al. (2021). The impact of different crop rotations by weed management strategies’ interactions on weed infestation and productivity of wheat (Triticum aestivum L.). Agronomy, 11, 2088. https://doi.org/10.3390/agronomy11102088

    Article  Google Scholar 

  • Shannon, M. C., & Grieve, C. M. (1999). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78, 5–36.

    Article  CAS  Google Scholar 

  • Shayanowako, A., Morrissey, O., Tanzi, A. S., et al. (2021). African leafy vegetables for improved human nutrition and food system resilience in Southern Africa: A scoping review. Sustainability, 13, 2896.

    Article  Google Scholar 

  • Siddique, K. H. M., Li, X., & Gruber, K. (2021). Rediscovering Asia’s forgotten crops to fight chronic and hidden hunger. Nature Plants, 7, 116–122. https://doi.org/10.1038/s41477-021-00850-z

    Article  PubMed  Google Scholar 

  • Siracusa, L., Avola, G., Patanè, C., et al. (2013). Re-evaluation of traditional Mediterranean foods. The local landraces of ‘Cipolla di Giarratana’ (Allium cepa L.) and long-storage tomato (Lycopersicon esculentum L.): Quality traits and polyphenol content. Journal of the Science of Food and Agriculture, 93(14), 3512–3519.

    Google Scholar 

  • Skendžić, S., Zovko, M., Živković, I. P., et al. (2021). The impact of climate change on agricultural insect pests. Insects, 12, 440. https://doi.org/10.3390/insects12050440

    Article  PubMed  PubMed Central  Google Scholar 

  • Slabbert, R., & van den Heever, E. (2006). Selection of traditional crops for improved drought tolerance in leafy amaranth: Moving towards sustainable food supply. In International conference on indigenous vegetables and legumes prospectus for fighting poverty, hunger malnutrition (Vol. 752, pp. 281–286). ISHS.

    Google Scholar 

  • Smetana, S., Mathys, A., Knoch, A., et al. (2015). Meat alternatives: Life cycle assessment of most known meat substitutes. The International Journal of Life Cycle Assessment, 20(9), 1254–1267. https://doi.org/10.1007/s11367-015-0931-6

    Article  CAS  Google Scholar 

  • Smetana, S., Spykman, R., & Heinz, V. (2021). Environmental aspects of insect mass production. Journal of Insects as Food and Feed, 7(5), 553–571. https://doi.org/10.3920/JIFF2020.0116

    Article  Google Scholar 

  • Soares, J., Deuchande, T., Valente, L., et al. (2019). Growth and nutritional responses of bean and soybean genotypes to elevated CO2 in a controlled environment. Plants, 8, 465. https://doi.org/10.3390/plants8110465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza, L. A., López Andrade, S. A., Ribeiro Souza, S. C., et al. (2013). Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia Gladiata in Pb-contaminated soils. International Journal of Phytoremediation, 15, 465–476.

    Article  CAS  PubMed  Google Scholar 

  • Springmann, M., Clark, M. A., Mason-D’Croz, D., et al. (2018). Options for keeping the food system within environmental limits. Nature, 562, 519–525. https://doi.org/10.1038/s41586-018-0594-0

    Article  CAS  PubMed  Google Scholar 

  • Stagnari, F., Maggio, A., Galieni, A., & Pisante, M. (2017). Multiple benefits of legumes for agriculture sustainability: an overview. Chemical and Biological Technologies in Agriculture, 4(1), 1–13.

    Google Scholar 

  • Stamp, P., Messmer, R., & Walter, A. (2012). Competitive underutilized crops will depend on the state funding of breeding programmes: An opinion on the example of Europe. Plant Breeding, 131(4), 461–464. https://doi.org/10.1111/j.1439-0523.2012.01990.x

    Article  Google Scholar 

  • Steffen, W., Richardson, K., Rockström, J., et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855.

    Article  PubMed  Google Scholar 

  • Steinfeld, H., Gerber, P., Wassenaar, T., et al. (2006). Livestock’s long shadow. FAO of the UN.

    Google Scholar 

  • Stošić, M., Ivezić, V., & Tadić, V. (2021). Tillage systems as a function of greenhouse gas (GHG) emission and fuel consumption mitigation. Environmental Science and Pollution Research, 28(13), 16492–16503. https://doi.org/10.1007/s11356-020-12211-y

    Article  CAS  PubMed  Google Scholar 

  • Tello, A., Aganovic, K., Parniakov, O., et al. (2021). Product development and environmental impact of an insect-based milk alternative. Future Foods, 4. https://doi.org/10.1016/J.FUFO.2021.100080

  • Teuteberg, H. J. (2006). Der Verzehr von Nahrungsmitteln in Deutschland pro Kopf und Jahr seit Beginn der Industrialisierung (1850–1975). https://doi.org/10.4232/1.8252.

  • Thanh, P. T., Sripichitt, P., Chanprame, S., et al. (2006). Transfer of drought resistant character from wild rice (Oryza meridionalis and Oryza nivara) to cultivated rice (Oryza sativa L.) by backcrossing and immature embryo culture. Kasetsart Journal of Social Sciences, 40, 582–594.

    Google Scholar 

  • Tonn, B., Thumm, U., & Claupein, W. (2010). Semi-natural grassland biomass for combustion: Influence of botanical composition, harvest date and site conditions on fuel composition. Grass and Forage Science, 65, 383–397.

    Article  CAS  Google Scholar 

  • Tran, F., Holland, J. E., Quesada, N., et al. (2021). What evidence exists on the effectiveness of the techniques and management approaches used to improve the productivity of field grown tomatoes under conditions of water-, nitrogen- and/or phosphorus-deficit? A systematic map. Environmental Evidence, 10, 14. https://doi.org/10.1186/s13750-021-00229-9

    Article  Google Scholar 

  • Traoré, H., Barro, A., Yonli, D., et al. (2020). Water conservation methods and cropping systems for increased productivity and economic resilience in Burkina Faso. Water (Switzerland), 12(4), 976.

    Google Scholar 

  • Uhl, P., & Brühl, C. A. (2019). The impact of pesticides on flower-visiting insects: A review with regard to European risk assessment. Environmental Toxicology and Chemistry, 38(11), 2355–2370.

    Article  CAS  PubMed  Google Scholar 

  • von Grebmer, K., Saltzman, A., Birol, E., et al. (2014). Global hunger index: The challenge of hidden hunger. Welthungerhilfe, International Food Policy Research Institute, and Concern Worldwide.

    Google Scholar 

  • Van Delden, S. H., SharathKumar, M., Butturini, M., et al. (2021). Current status and future challenges in implementing and upscaling vertical farming systems. Nature Food, 2, 944–956. https://doi.org/10.1038/s43016-021-00402-w

    Article  PubMed  Google Scholar 

  • Van Oosterom, E. J., O’Leary, G. J., Carberry, P. S., et al. (2002). Simulating growth, development, and yield of tillering pearl millet. III. Biomass accumulation and partitioning. Field Crops Research, 79(2–3), 85–106.

    Article  Google Scholar 

  • Vaz Patto, M. C., & Rubiales, D. (2014). Lathyrus diversity: Available resources with relevance to crop improvement. Annals of Botany, 113(6), 895–908. https://doi.org/10.1093/aob/mcu024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaz Patto, M. C., Amarowicz, R., Aryee, A., et al. (2015). Achievements and challenges in improving the nutritional quality of food legumes. Critical Reviews in Plant Sciences, 34, 105–143. https://doi.org/10.1080/07352689.2014.897907

    Article  CAS  Google Scholar 

  • Vermeulen, S., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37, 195–222. https://doi.org/10.1146/annurev-environ-020411-130608

    Article  Google Scholar 

  • Vernooy, R. (2021). Action research on neglected and underutilised species. A methodological guide. The Alliance of Bioversity International and CIAT.

    Google Scholar 

  • Vidigal, P., Duarte, B., Cavaco, A. R., et al. (2018). Preliminary diversity assessment of an undervalued tropical bean (Lablab purpureus (L.) Sweet) through fatty acid profiling. Plant Physiology and Biochemistry, 132, 508–514.

    Article  CAS  PubMed  Google Scholar 

  • Vijayalakshmi, D., Geetha, K., Gowda, J., et al. (2010). Empowerment of women farmers through value addition on minor millets genetic resources in Karnataka. Indian Journal of Plant Genetic Resources, 23(1), 132–135.

    Google Scholar 

  • Villegas-Fernández, Á. M., Sillero, J. C., Emeran, A. A., et al. (2011). Multiple-disease resistance in Vicia faba: Multi-environment field testing for identification of combined resistance to rust and chocolate spot. Field Crops Research, 124, 59–65.

    Article  Google Scholar 

  • Wang, S. T., & Ebert, A. W. (2013). Breeding of leafy amaranth for adaptation to climate change. In R. Holmer, G. Linwattana, P. Nath, & J. D. H. Keatinge (Eds.), High value vegetables in Southeast Asia: Production, supply and demand; proceedings of the SEAVEG 2012 regional symposium (pp. 36–43). AVRDC - The World Vegetable Center.

    Google Scholar 

  • Waramit, N., Moore, K. J., & Fales, S. L. (2012). Forage quality of native warm-season grasses in response to nitrogen fertilization and harvest date. Animal Feed Science and Technology, 174, 46–59.

    Article  CAS  Google Scholar 

  • Weinberger, K. (2003). Impact analysis of Mungbean research in South and Southeast Asia. Final report of GTZ Project. Shanhua, Taiwan. https://assets.publishing.service.gov.uk/media/57a08b1ced915d3cfd000b38/DFID_impact_case_study_Mungbean_FINAL_1_.pdf

  • Weinberger, K., & Swai, I. (2006). Consumption of traditional vegetables in Central and North-Eastern Tanzania. Ecology of Food and Nutrition, 45, 87–103.

    Article  Google Scholar 

  • Wilker, J., Navabi, A., Rajcan, I., et al. (2019). Agronomic performance and nitrogen fixation of heirloom and conventional dry bean varieties under low-nitrogen field conditions. Frontiers in Plant Science, 10, 952. https://doi.org/10.3389/fpls.2019.00952

    Article  PubMed  PubMed Central  Google Scholar 

  • Will, M. (2008). Promoting value chains of neglected and underutilized species for pro-poor growth and biodiversity conservation: Guidelines and good practices. Bioversity International; Global Facilitation Unit for Underutilized Species. isbn:978-92-9043-775-8. Available on-line: https://cgspace.cgiar.org/handle/10568/104850

  • Willett, W., Rockström, J., Loken, B., et al. (2019). Food in the Anthropocene: The EAT-lancet commission on healthy diets from sustainable food systems. Lancet (London, England), 393(10170), 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4

    Article  PubMed  Google Scholar 

  • Wilson, D. M., Dalluge, D. L., Rover, M., et al. (2013). Crop management impacts biofuel quality: Influence of switchgrass harvest time on yield, nitrogen and ash of fast pyrolysis products. Bioenergy Research, 6, 103–113.

    Article  CAS  Google Scholar 

  • Wirsig, A., Profeta, A., Häring, A., et al. (n.d.). Branding of rural regions and autochthon agricultural products linked to their terroir Section 2. Agricultural Economics and Rural Sociology Branding of rural regions and autochthon agricultural products linked to their terroir.

    Google Scholar 

  • Wirsig, A., Profeta, A., Häring, A., & Cerjak, M. (2011). Branding of rural regions and autochthon agricultural products linked to their terroir. Proceedings. 43rd Proceedings. 46th Croatian and 6th Croatian and 3rd International Symposium on Agriculture. Opatija. Croatia (301-305) Agriculture. Opatija. Croatia (301- XXX), January, 301–305.

    Google Scholar 

  • Wright, D., Neupane, S., Heidecker, T., et al. (2021). Understanding photothermal interactions will help expand production range and increase genetic diversity of lentil (Lens culinaris Medik.). Plants, People and Planet, 3, 171–181. https://doi.org/10.1002/ppp3.10158

    Article  Google Scholar 

  • Yachi, S., & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 96, 1463–1468. https://doi.org/10.1073/pnas.96.4.1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai, Z., Martínez, J. F., Beltran, V., et al. (2020). Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170. https://doi.org/10.1016/j.compag.2020.105256

  • Zhao, J., Zeng, Z., He, X., et al. (2015). Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. European Journal of Soil Biology, 68, 61–68. https://doi.org/10.1016/j.ejsobi.2015.03.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Union’s Horizon 2020 Research and Innovation Programme through the project “Realising Dynamic Value Chains for Underutilised Crops” (RADIANT), Grant Agreement number 101000622. The authors would also like to thank the scientific collaboration under the FCT project UIDB/50016/2020. in. The James Hutton Institute (CH and PPMI) are supported by the “Rural and Environmental Science and Analytical Services” (RESAS), a Division of the Scottish Government.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta W. Vasconcelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinto, E. et al. (2023). Healthier and Sustainable Food Systems: Integrating Underutilised Crops in a ‘Theory of Change Approach’. In: Galanakis, C.M. (eds) Biodiversity, Functional Ecosystems and Sustainable Food Production. Springer, Cham. https://doi.org/10.1007/978-3-031-07434-9_9

Download citation

Publish with us

Policies and ethics