Skip to main content

Introduction to Optical Coherence Tomography

  • Chapter
  • First Online:
Atlas of Ocular Optical Coherence Tomography

Abstract

(1) Basics and principles of optical coherence tomography (OCT), which briefly discuss the mechanisms and operation of OCT systems and a comparison of old and new systems (time domain vs. spectral domain) and their reproducibility. It concisely explains the frequency domain OCT, multiple reference OCT and hand held. (2) Normal OCT, which describes normal findings and variations that are expected on normal OCT images, and the layers of the normal retina and in different parts of the posterior segment. (3) Anterior segment OCT, which describe the mechanism and clinical applications in various disease (4) Enhanced-depth imaging (EDI)-OCT and its applications and indications in various diseases such as choroidal tumors, age-related macular degeneration, diabetic retinopathy, central serous chorioretinopathy, glaucoma, intraocular inflammation, and myopia. Moreover, choroidal measurement and its variations under different conditions are discussed. (5) OCT angiography, which explains the mechanism and Clinical application and limitations of OCTA (6) Limitations and indications of OCT, which evaluate and explain the drawbacks and advantages of this diagnostic method for the exploration of ocular pathologies. (7) Pitfalls and artifacts, which covers and illustrates diagnostic pitfalls and artifacts in OCT image interpretation in circumstances such as the presence of an epiretinal membrane and myopia (8) Artificial intelligence in OCT image analysis, which describes the classification and image synthesis and enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuman JS, Fujimoto JG, Puliafito CA, Duke J. Optical coherence tomography of ocular diseases. Slack New Jersey; 2004.

    Google Scholar 

  2. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113(3):325–32.

    Article  CAS  Google Scholar 

  3. Schuman JS, Pedut-Kloizman T, Hertzmark E, Hee MR, Wilkins JR, Coker JG, Puliafito CA, Fujimoto JG, Swanson EA. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996;103(11):1889–98.

    Article  CAS  Google Scholar 

  4. Arevalo JF, Garcia RA, Sanchez JG, Wu L, Fuenmayor-Rivera D, Giral A. Angiography of optic nerve diseases. In: Retinal angiography and optical coherence tomography. Springer; 2009, p. 155–177.

    Google Scholar 

  5. Leahy M, Hogan J, Wilson C, Subhash H, Dsouza R. Multiple reference optical coherence tomography (MR-OCT) system. In: Dynamics and fluctuations in biomedical photonics X, vol. 8580. 2013. p. 85800L.

    Google Scholar 

  6. Song G, Jelly ET, Chu K, Kendall WY, Wax A. A review of low-cost and portable optical coherence tomography. Prog Biomed Eng. 2021.

    Google Scholar 

  7. Lu CD, Kraus MF, Potsaid B, Liu JJ, Choi W, Jayaraman V, Cable AE, Hornegger J, Duker JS, Fujimoto JG. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt Express. 2014;5(1):293–311.

    Article  Google Scholar 

  8. Jung W, Kim J, Jeon M, Chaney EJ, Stewart CN, Boppart SA. Handheld optical coherence tomography scanner for primary care diagnostics. IEEE Trans Biomed Eng. 2010;58(3):741–4.

    Article  Google Scholar 

  9. Wang Z, Lee H-C, Vermeulen D, Chen L, Nielsen T, Park SY, Ghaemi A, Swanson E, Doerr C, Fujimoto J. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection. Biomed Opt Express. 2015;6(7):2562–74.

    Article  Google Scholar 

  10. Pande P, Shelton RL, Monroy GL, Nolan RM, Boppart SA. Low-cost hand-held probe for depth-resolved low-coherence interferometry. Biomed Opt Express. 2017;8(1):338–48.

    Article  Google Scholar 

  11. Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, Schuman JS, Duker JS. Assessment of artifacts and reproducibility across spectral-and time-domain optical coherence tomography devices. Ophthalmology. 2009;116(10):1960–70.

    Article  Google Scholar 

  12. Sadiq MA, Rashid A, Channa R, Hatef E, Do DV, Nguyen QD, Sepah YJ. Reliability and reproducibility of spectral and time domain optical coherence tomography images before and after correction for patients with age-related macular degeneration. F1000Research, vol. 2. 2013.

    Google Scholar 

  13. Bressler SB, Edwards AR, Chalam KV, Bressler NM, Glassman AR, Jaffe GJ, Melia M, Saggau DD, Plous OZ, Committee DRCRNW. Reproducibility of spectral-domain optical coherence tomography retinal thickness measurements and conversion to equivalent time-domain metrics in diabetic macular edema. JAMA Ophthalmol. 2014;132(9):1113–22.

    Article  Google Scholar 

  14. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102(2):217–29.

    Article  CAS  Google Scholar 

  15. Wykoff CC, Berrocal AM, Schefler AC, Uhlhorn SR, Ruggeri M, Hess D. Intraoperative OCT of a full-thickness macular hole before and after internal limiting membrane peeling. Ophthalmic Surgery, Lasers Imaging Retin. 2010;41(1):7–11.

    Article  Google Scholar 

  16. Puliafito CA. Optical coherence tomography: a new tool for intraoperative decision making. Ophthalmic Surgery, Lasers Imaging Retin. 2010;41(1):6.

    Article  Google Scholar 

  17. Spaide RF, Curcio CA. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina. 2011;31(8):1609.

    Article  Google Scholar 

  18. Witkin AJ, Ko TH, Fujimoto JG, Chan A, Drexler W, Schuman JS, Reichel E, Duker JS. Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. Am J Ophthalmol. 2006;142(6):945–52.

    Article  Google Scholar 

  19. E. T. D. R. S. R. Group. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification: ETDRS report number 10. Ophthalmology. 1991; 98(5):786–806.

    Google Scholar 

  20. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2005;112(10):1734–46.

    Article  Google Scholar 

  21. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2006;113(11):2054–65.

    Article  Google Scholar 

  22. Chin EK, Sedeek RW, Li Y, Beckett L, Redenbo E, Chandra K, Park SS. Reproducibility of macular thickness measurement among five OCT instruments: effects of image resolution, image registration, and eye tracking. Ophthalmic Surg Lasers Imaging Retin. 2012;43(2):97–108.

    Article  Google Scholar 

  23. Durbin M, Abunto T, Chang M, Lujan B. Retinal measurements: comparison between cirrus HD-OCT and stratus OCT. Zeiss-Meditec White Paper. 2009.

    Google Scholar 

  24. Leung CK, Cheung CY, Weinreb RN, Lee G, Lin D, Pang CP, Lam DSC. Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2008;49(11):4893–7.

    Article  Google Scholar 

  25. Huang J, Liu X, Wu Z, Xiao H, Dustin L, Sadda S. Macular thickness measurements in normal eyes with time domain and fourier domain optical coherence tomography. Retina. 2009;29(7):980.

    Article  Google Scholar 

  26. Roh Y-R, Park KH, Woo SJ. Foveal thickness between stratus and spectralis optical coherence tomography in retinal diseases. Korean J Ophthalmol. 2013;27(4):268–75.

    Article  Google Scholar 

  27. Grover S, Murthy RK, Brar VS, Chalam KV. Comparison of retinal thickness in normal eyes using Stratus and Spectralis optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(5):2644–7.

    Article  Google Scholar 

  28. González LS, González RA, Plasencia MA, Reyes PA. Normal macular thickness and volume using spectral domain optical coherence tomography in a reference population. Archivos de la Sociedad Española de Oftalmología. English Ed. 2013;88(9):352–358.

    Google Scholar 

  29. Liew SHM, Gilbert CE, Spector TD, Marshall J, Hammond CJ. The role of heredity in determining central retinal thickness. Br J Ophthalmol. 2007;91(9):1143–7.

    Article  Google Scholar 

  30. Eriksson U, Alm A. Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br J Ophthalmol. 2009;93(11):1448–52.

    Article  CAS  Google Scholar 

  31. Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, Puliafito CA, Fujimoto JG. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112(12):1584–9.

    Article  CAS  Google Scholar 

  32. Steinert RF, Huang D. Anterior segment optical coherence tomography. Slack Incorporated; 2008.

    Google Scholar 

  33. Shan J, DeBoer C, Xu BY. Anterior segment optical coherence tomography: applications for clinical care and scientific research. Asia-Pacific J. Ophthalmol. (Philadelphia, Pa.). 2019.

    Google Scholar 

  34. Siebelmann S, Scholz P, Sonnenschein S, Bachmann B, Matthaei M, Cursiefen C, Heindl LM. Anterior segment optical coherence tomography for the diagnosis of corneal dystrophies according to the IC3D classification. Surv Ophthalmol. 2018;63(3):365–80.

    Article  Google Scholar 

  35. Kim M, Kim SS, Kwon HJ, Koh HJ, Lee SC. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study. Invest Ophthalmol Vis Sci. 2012;53(12):7710–7.

    Article  Google Scholar 

  36. Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K, Iida T. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):5536–40.

    Article  Google Scholar 

  37. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147(5):811–5.

    Article  Google Scholar 

  38. Manjunath V, Taha M, Fujimoto JG, Duker JS. Choroidal thickness in normal eyes measured using cirrus HD optical coherence tomography. Am J Ophthalmol. 2010;150(3):325–9.

    Article  Google Scholar 

  39. Agawa T, Miura M, Ikuno Y, Makita S, Fabritius T, Iwasaki T, Goto H, Nishida K, Yasuno Y. Choroidal thickness measurement in healthy Japanese subjects by three-dimensional high-penetration optical coherence tomography. Graefe’s Arch Clin Exp Ophthalmol. 2011;249(10):1485–92.

    Article  Google Scholar 

  40. Hirata M, Tsujikawa A, Matsumoto A, Hangai M, Ooto S, Yamashiro K, Akiba M, Yoshimura N. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):4971–8.

    Article  Google Scholar 

  41. Esmaeelpour M, Považay B, Hermann B, Hofer B, Kajic V, Kapoor K, Sheen NJL, North RV, Drexler W. Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci. 2010;51(10):5260–6.

    Article  Google Scholar 

  42. Manjunath V, Goren J, Fujimoto JG, Duker JS. Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152(4):663–8.

    Article  Google Scholar 

  43. Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147(5):801–10.

    Article  Google Scholar 

  44. Querques G, Querques L, Forte R, Massamba N, Coscas F, Souied EH. Choroidal changes associated with reticular pseudodrusen. Invest Ophthalmol Vis Sci. 2012;53(3):1258–63.

    Article  Google Scholar 

  45. Rishi P, Rishi E, Mathur G, Raval V. Ocular perfusion pressure and choroidal thickness in eyes with polypoidal choroidal vasculopathy, wet-age-related macular degeneration, and normals. Eye. 2013;27(9):1038–43.

    Article  CAS  Google Scholar 

  46. Jirarattanasopa P, Ooto S, Nakata I, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N. Choroidal thickness, vascular hyperpermeability, and complement factor H in age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2012;53(7):3663–72.

    Article  CAS  Google Scholar 

  47. Kim JT, Lee DH, Joe SG, Kim J-G, Yoon YH. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2013;54(5):3378–84.

    Article  Google Scholar 

  48. Querques G, Lattanzio R, Querques L, Del Turco C, Forte R, Pierro L, Souied EH, Bandello F. Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci. 2012;53(10):6017–24.

    Article  Google Scholar 

  49. Gemenetzi M, De Salvo G, Lotery AJ. Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye. 2010;24(12):1743–56.

    Article  CAS  Google Scholar 

  50. Imamura Y, Fujiwara T, Margolis RON, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29(10):1469–73.

    Article  Google Scholar 

  51. Manjunath V, Fujimoto JG, Duker JS. Cirrus HD-OCT high definition imaging is another tool available for visualization of the choroid and provides agreement with the finding that the choroidal thickness is increased in central serous chorioretinopathy in comparison to normal eyes. Retina. 2010;30(8):1320–1.

    Article  Google Scholar 

  52. Kim S-W, Oh J, Kwon S-S, Yoo J, Huh K. Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina. 2011;31(9):1904–11.

    Article  Google Scholar 

  53. Yang L, Jonas JB, Wei W. Optical coherence tomography–assisted enhanced depth imaging of central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2013;54(7):4659–65.

    Article  Google Scholar 

  54. Furlanetto RL, Park SC, Damle UJ, Sieminski SF, Kung Y, Siegal N, Liebmann JM, Ritch R. Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons. Invest Ophthalmol Vis Sci. 2013;54(7):4836–42.

    Article  Google Scholar 

  55. Kiumehr S, Park SC, Dorairaj S, Teng CC, Tello C, Liebmann JM, Ritch R. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Arch Ophthalmol. 2012;130(5):552–9.

    Article  Google Scholar 

  56. Park SC, De Moraes CGV, Teng CC, Tello C, Liebmann JM, Ritch R. Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology. 2012;119(1):3–9.

    Article  Google Scholar 

  57. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T, Fujiwara T, Spaide RF. Subfoveal choroidal thickness after treatment of Vogt–Koyanagi–Harada disease. Retina. 2011;31(3):510–7.

    Article  Google Scholar 

  58. Nakayama M, Keino H, Okada AA, Watanabe T, Taki W, Inoue M, Hirakata A. Enhanced depth imaging optical coherence tomography of the choroid in Vogt–Koyanagi–Harada disease. Retina. 2012;32(10):2061–9.

    Article  Google Scholar 

  59. Fong AHC, Li KKW, Wong D. Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt–Koyanagi–Harada disease. Retina. 2011;31(3):502–9.

    Article  Google Scholar 

  60. da Silva FT, Sakata VM, Nakashima A, Hirata CE, Olivalves E, Takahashi WY, Costa RA, Yamamoto JH. Enhanced depth imaging optical coherence tomography in long-standing Vogt–Koyanagi–Harada disease. Br J Ophthalmol. 2013;97(1):70–4.

    Article  Google Scholar 

  61. Yasuno Y, Okamoto F, Kawana K, Yatagai T, Oshika T. Investigation of multifocal choroiditis with panuveitis by three-dimensional high-penetration optical coherence tomography. J Biophotonics. 2009;2(6–7):435–41.

    Article  Google Scholar 

  62. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445–50.

    Article  Google Scholar 

  63. Hayashi M, Ito Y, Takahashi A, Kawano K, Terasaki H. Scleral thickness in highly myopic eyes measured by enhanced depth imaging optical coherence tomography. Eye. 2013;27(3):410–7.

    Article  CAS  Google Scholar 

  64. Imamura Y, Iida T, Maruko I, Zweifel SA, Spaide RF. Enhanced depth imaging optical coherence tomography of the sclera in dome-shaped macula. Am J Ophthalmol. 2011;151(2):297–302.

    Article  Google Scholar 

  65. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

    Article  Google Scholar 

  66. Fingler J, Readhead C, Schwartz DM, Fraser SE. Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid. Invest Ophthalmol Vis Sci. 2008;49(11):5055–9.

    Article  Google Scholar 

  67. Li X-X, Wu W, Zhou H, Deng J-J, Zhao M-Y, Qian T-W, Yan C, Xu X, Yu S-Q. A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol. 2018;11(11):1784.

    Google Scholar 

  68. Told R, Sacu S, Hecht A, Baratsits M, Eibenberger K, Kroh ME, Rezar-Dreindl S, Schlanitz FG, Weigert G, Pollreisz A. Comparison of SD-optical coherence tomography angiography and indocyanine green angiography in type 1 and 2 neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2018;59(6):2393–400.

    Article  Google Scholar 

  69. Alibhai AY, Moult EM, Shahzad R, Rebhun CB, Moreira-Neto C, McGowan M, Lee D, Lee B, Baumal CR, Witkin AJ. Quantifying microvascular changes using OCT angiography in diabetic eyes without clinical evidence of retinopathy. Ophthalmol Retin. 2018;2(5):418–27.

    Article  Google Scholar 

  70. Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35(11):2377–83.

    Article  Google Scholar 

  71. Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, Yokota H, Yoshida A. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160(1):35–44.

    Article  Google Scholar 

  72. Gildea D. The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: a systematic review. Int Ophthalmol. 2019;39(10):2413–33.

    Article  Google Scholar 

  73. Waheed NK, Moult EM, Fujimoto JG, Rosenfeld PJ. Optical coherence tomography angiography of dry age-related macular degeneration. OCT Angiogr Retin Macular Dis. 2016;56:91–100.

    Article  Google Scholar 

  74. Roisman L, Goldhardt R. OCT Angiography: an upcoming non-invasive tool for diagnosis of age-related macular degeneration. Curr Ophthalmol Rep. 2017;5(2):136–40.

    Article  Google Scholar 

  75. Akil H, Huang AS, Francis BA, Sadda SR, Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE. 2017;12(2): e0170476.

    Article  Google Scholar 

  76. Ray R, Stinnett SS, Jaffe GJ. Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol. 2005;139(1):18–29.

    Article  Google Scholar 

  77. Ho J, Castro DPE, Castro LC, Chen Y, Liu J, Mattox C, Krishnan C, Fujimoto JG, Schuman JS, Duker JS. Clinical assessment of mirror artifacts in spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(7):3714–20.

    Article  Google Scholar 

  78. Waldstein SM, Gerendas BS, Montuoro A, Simader C, Schmidt-Erfurth U. Quantitative comparison of macular segmentation performance using identical retinal regions across multiple spectral-domain optical coherence tomography instruments. Br J Ophthalmol. 2015;99(6):794–800.

    Article  Google Scholar 

  79. Karam EZ, Ramirez E, Arreaza PL, Morales-Stopello J. Optical coherence tomographic artefacts in diseases of the retinal pigment epithelium. Br J Ophthalmol. 2007;91(9):1139–42.

    Article  Google Scholar 

  80. Enders C, Lang GE, Dreyhaupt J, Loidl M, Lang GK, Werner JU. Quantity and quality of image artifacts in optical coherence tomography angiography. PLoS ONE. 2019;14(1): e0210505.

    Article  CAS  Google Scholar 

  81. Lu L, Wang X, Carneiro G, Yang L, Deep learning and convolutional neural networks for medical imaging and clinical informatics. Springer; 2019.

    Google Scholar 

  82. Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev. 2020;53(8):5455–516.

    Article  Google Scholar 

  83. Kapoor R, Whigham BT, Al-Aswad LA. Artificial intelligence and optical coherence tomography imaging. Asia-Pacific J Ophthalmol. 2019;8(2):187–94.

    Google Scholar 

  84. Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172(5):1122–31.

    Article  CAS  Google Scholar 

  85. Tsuji T, Hirose Y, Fujimori K, Hirose T, Oyama A, Saikawa Y, Mimura T, Shiraishi K, Kobayashi T, Mizota A. Classification of optical coherence tomography images using a capsule network. BMC Ophthalmol. 2020;20(1):1–9.

    Article  Google Scholar 

  86. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention; 2015. p. 234–41.

    Google Scholar 

  87. Devalla SK, Renukanand PK, Sreedhar BK, Subramanian G, Zhang L, Perera S, Mari J-M, Chin KS, Tun TA, Strouthidis NG. DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images. Biomed Opt Express. 2018;9(7):3244–65.

    Article  Google Scholar 

  88. Wang B, Wei W, Qiu S, Wang S, Li D, He H. Boundary aware U-net for retinal layers segmentation in optical coherence tomography images. IEEE J Biomed Heal Inform. 2021.

    Google Scholar 

  89. Zheng C, Xie X, Zhou K, Chen B, Chen J, Ye H, Li W, Qiao T, Gao S, Yang J. Assessment of generative adversarial networks model for synthetic optical coherence tomography images of retinal disorders. Transl Vis Sci Technol. 2020;9(2):29.

    Article  Google Scholar 

  90. Tajmirriahi M, Kafieh R, Amini Z, Rabbani H. A lightweight mimic convolutional auto-encoder for denoising retinal optical coherence tomography images. IEEE Trans Instrum Meas. 2021.

    Google Scholar 

  91. Guo A, Fang L, Qi M, Li S. Unsupervised denoising of optical coherence tomography images with nonlocal-generative adversarial network. IEEE Trans. Instrum. Meas. 2020.

    Google Scholar 

  92. Das V, Dandapat S, Bora PK. Unsupervised super-resolution of OCT images using generative adversarial network for improved age-related macular degeneration diagnosis. IEEE Sens J. 2020;20(15):8746–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedra Hajizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajizadeh, F., Kafieh, R., Tajmirriahi, M. (2022). Introduction to Optical Coherence Tomography. In: Hajizadeh, F. (eds) Atlas of Ocular Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-031-07410-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07410-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07409-7

  • Online ISBN: 978-3-031-07410-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics