Skip to main content

Oxidative Stress Biomarkers in Exercise

Intake of Supplements

  • Reference work entry
  • First Online:
Biomarkers in Nutrition

Abstract

An increase in the amount of free radicals resulting from exercise has been reported in various studies on humans and experimental animals to date. Vigorous exercise increases the metabolic rate, resulting in an increase in oxygen consumption and an increase in free radical production. In cases where there is no or insufficient antioxidant mechanism that removes free radicals from the living organism, the damage to the body by oxidative stress cannot be prevented. It is common practice to use dietary supplements to increase the benefits of exercise, reduce biological problems, and improve performance. Consumption of foods rich in antioxidants in the diet during or after exercise plays a key role in reducing this damage. Various nutritional strategies, especially in athletes, are being studied by researchers to reduce oxidative stress at the cellular level. In this part, indicators of exercise-induced oxidative stress and the effect of supplementation on this mechanism are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AA:

Ascorbic acid

BDNF:

Neurotrophic factor

DNP:

Dinitrophenyl

DNPH:

Dinitrophenylhydrazine

GHS:

Glutathione

GPX:

Glutathione peroxidase

NAC:

N-Acetyl-cysteine

OS:

Oxidative stress

OX-LDL:

Oxidized low-density lipoprotein

PC:

Protein carbonyls

PLP:

Pyridoxal 5′-phosphate

ROS:

Reactive oxygen species

-SH:

Sulfhydryl

SOD:

Superoxide dismutase

SS-:

Disulfide

VA:

Vitamin A

VB6:

Vitamin B6

References

  • Ammar A, Turki M, Hammouda O, Chtourou H, Trabelsi K, Bouaziz M, Abdelkarim O, Hoekelmann A, Ayadi F, Souissi N, et al. Effects of pomegranate juice supplementation on oxidative stress biomarkers following weightlifting exercise. Nutrients. 2017;9(8):819.

    Article  PubMed Central  Google Scholar 

  • Bachi ALL, Barros MP, Vieira RP, Rocha GA, de Andrade PBM, Victorino AB, Ramos LR, Gravina CF, Lopes JD, Vaisberg M, et al. Combined exercise training performed by elderly women reduces redox indexes and proinflammatory cytokines related to atherogenesis. Oxidative Med Cell Longev. 2019;2019:6469213.

    Article  Google Scholar 

  • Basham SA, Waldman H, Krings B, Lamberth J, Smith J, McAllister M. Effect of curcumin supplementation on exercise-induced oxidative stress, inflammation, muscle damage, and muscle soreness. J Diet Suppl. 2020;17(4):401–14.

    Article  CAS  Google Scholar 

  • Benderitter M, Hadj-Saad F, Lhuissier M, Maupoil V, Guilland JC, Rochette L. Effects of exhaustive exercise and vitamin B6 deficiency on free radical oxidative process in male trained rats. Free Radic Biol Med. 1996;21(4):541–9.

    Article  CAS  PubMed  Google Scholar 

  • Benedikter BJ, Weseler AR, Wouters EF, Savelkoul PH, Rohde GG, Stassen FR. Redox-dependent thiol modifications: implications for the release of extracellular vesicles. Cellular and Molecular Life Sciences. 2018;75(13):2321–2337.

    Google Scholar 

  • Brocardo PS, Budni J, Pavesi E, Franco JL, Uliano-Silva M, Trevisan R, Terenzi MG, Dafre AL, Rodrigues ALS. Folic acid administration prevents ouabain-induced hyperlocomotion and alterations in oxidative stress markers in the rat brain. Bipolar Disord. 2010;12(4):414–24.

    Article  CAS  PubMed  Google Scholar 

  • Ceci R, Valls MRB, Duranti G, Dimauro I, Quaranta F, Pittaluga M, Sabatini S, Caserotti P, Parisi P, Parisi A, et al. Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training. Redox Biol. 2014;2:65–72.

    Article  CAS  PubMed  Google Scholar 

  • Choi EY, Cho YO. Effect of vitamin B6 deficiency on antioxidative status in rats with exercise-induced oxidative stress. Nutr Res Pract. 2009;3(3):208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chupel MU, Minuzzi LG, Furtado GE, Santos ML, Ferreira JP, Filaire E, Teixeira AM. Taurine supplementation reduces myeloperoxidase and matrix-metalloproteinase-9 levels and improves the effects of exercise in cognition and physical fitness in older women. Amino Acids. 2021;53(3):333–45.

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38.

    Article  CAS  PubMed  Google Scholar 

  • Dao DQ, Ngo TC, Thong NM, Nam PC. Is vitamin A an antioxidant or a pro-oxidant? J Phys Chem B. 2017;121(40):9348–57.

    Article  CAS  PubMed  Google Scholar 

  • Darband SG, Sadighparvar S, Yousefi B, Kaviani M, Mobaraki K, Majidinia M. Combination of exercise training and l-arginine reverses aging process through suppression of oxidative stress, inflammation, and apoptosis in the rat heart. Pflug Arch Eur J Phys. 2020;472(2):169–78.

    Article  CAS  Google Scholar 

  • Davison G, Gleeson M. The effects of acute vitamin C supplementation on cortisol, interleukin-6, and neutrophil responses to prolonged cycling exercise. Eur J Sport Sci. 2007;7(1):15–25.

    Article  Google Scholar 

  • de Oliveira DC, Rosa FT, Simões-Ambrósio L, et al. Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes. Nutrition. 2019;63:29–35.

    Article  PubMed  Google Scholar 

  • Delrobaei F, Fatemi I, Shamsizadeh A, Allahtavakoli M. Ascorbic acid attenuates cognitive impairment and brain oxidative stress in ovariectomized mice. Pharmacol Rep. 2019;71(1):133–8.

    Article  CAS  PubMed  Google Scholar 

  • Dhitavat S, Ortiz D, Rogers E, Rivera E, Shea TB. Folate, vitamin E, and acetyl-l-carnitine provide synergistic protection against oxidative stress resulting from exposure of human neuroblastoma cells to amyloid-beta. Brain Res. 2005;1061(2):114–7.

    Article  CAS  PubMed  Google Scholar 

  • Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol Respir Environ Exerc Physiol. 1978;45(6):927–32.

    CAS  PubMed  Google Scholar 

  • Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326–32.

    Article  CAS  PubMed  Google Scholar 

  • Fittipaldi S, Dimauro I, Mercatelli N, Caporossi D. Role of exercise-induced reactive oxygen species in the modulation of heat shock protein response. Free Radic Res. 2014;48(1):52–70.

    Article  CAS  PubMed  Google Scholar 

  • Galan AI, Palacios E, Ruiz F, Diez A, Arji M, Almar M, Moreno C, Calvo JI, Munoz ME, Delgado MA, et al. Exercise, oxidative stress and risk of cardiovascular disease in the elderly. Protective role of antioxidant functional foods. Biofactors. 2006;27(1–4):167–83.

    Article  CAS  PubMed  Google Scholar 

  • Giustina AD, Danielski LG, Novochadlo MM, Goldim MPS, Joaquim L, Metzker KLL, Carli RJ, Denicol T, Cidreira T, Vieira T, et al. Vitamin B6 reduces oxidative stress in lungs and liver in experimental sepsis. An Acad Bras Cienc. 2019;91(4):e20190434.

    Article  CAS  PubMed  Google Scholar 

  • Jones DP, Sies H. The redox code. Antioxidants & redox signaling. 2015;23(9):734–746.

    Google Scholar 

  • Joshi R, Adhikari S, Patro BS, Chattopadhyay S, Mukherjee T. Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity. Free Radic Biol Med. 2001;30(12):1390–9.

    Article  CAS  PubMed  Google Scholar 

  • Kayacan Y, Yazar H, Kisa EC, Ghojebeigloo BE. A novel biomarker explaining the role of oxidative stress in exercise and L-tyrosine supplementation: thiol/disulphide homeostasis. Arch Physiol Biochem. 2018;124(3):232–6.

    Article  CAS  PubMed  Google Scholar 

  • Kayacan Y, Cetinkaya A, Yazar H, Makaraci Y. Oxidative stress response to different exercise intensity with an automated assay: thiol/disulphide homeostasis. Arch Physiol Biochem. 2019a;127:504–8.

    Article  PubMed  Google Scholar 

  • Kayacan Y, Yazar H, Cerit G, Ghojebeigloo BE. A new oxidative stress indicator: effect of 5-hydroxytryptophan on thiol-disulfide homeostasis in exercise. Nutrition. 2019b;63–64:114–9.

    Article  PubMed  Google Scholar 

  • Le Garf S, Sibille B, Mothe-Satney I, Eininger C, Fauque P, Murdaca J, Chinetti G, Neels JG, Rousseau AS. Alpha-lipoic acid supplementation increases the efficacy of exercise- and diet-induced obesity treatment and induces immunometabolic changes in female mice and women. FASEB J. 2021;35(4):e21312.

    PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007;12(5):913–22.

    Article  CAS  PubMed  Google Scholar 

  • Ozhogina OA, Kasaikina OT. Beta-carotene as an interceptor of free-radicals. Free Radic Biol Med. 1995;19(5):575–81.

    Article  CAS  PubMed  Google Scholar 

  • Pappas A, Tsiokanos A, Fatouros I, et al. The effects of spirulina supplementation on redox status and performance following a muscle damaging protocol. Int J Mol Sci. 2021;22(7):3559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra M, Stahl S, Hellmann H. Vitamin B6 and its role in cell metabolism and physiology. Cells. 2018;7(7):84.

    Google Scholar 

  • Petiz LL, Girardi CS, Bortolin RC, Kunzler A, Gasparotto J, Rabelo TK, Matte C, Moreira JC, Gelain DP. Vitamin A oral supplementation induces oxidative stress and suppresses IL-10 and HSP70 in skeletal muscle of trained rats. Nutrients. 2017a;9(4):353.

    Article  PubMed Central  Google Scholar 

  • Petiz LL, Kunzler A, Bortolin RC, Gasparotto J, Matte C, Moreira JCF, Gelain DP. Role of vitamin A oral supplementation on oxidative stress and inflammatory response in the liver of trained rats. Appl Physiol Nutr Metab. 2017b;42(11):1192–200.

    Article  CAS  PubMed  Google Scholar 

  • Poulab E, Sajedinia H, Hafezi F, et al. The effect of a four-week acute vitamin C supplementation on the markers of oxidative stress and inflammation following eccentric exercise in active men. Int J Basic Sci Appl Res. 2015;4:190–5.

    Google Scholar 

  • Ravichandran V, Selvam R. Increased plasma lipid peroxidation in vitamin B6 deficient rats. Indian J Exp Biol. 1991;29:56–8.

    CAS  PubMed  Google Scholar 

  • Reid MB, Stokic DS, Koch SM, Khawli FA, Leis AA. N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest. 1994;94(6):2468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez NR, DiMarco NM, Langley S, American Dietetic A, Dietitians of C, American College of Sports Medicine N, Athletic P. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J Am Diet Assoc. 2009;109(3):509–27.

    Article  PubMed  Google Scholar 

  • Salo DC, Donovan CM, Davies KJA. Hsp70 and other possible heat-shock or oxidative stress proteins are induced in skeletal-muscle, heart, and liver during exercise. Free Radic Biol Med. 1991;11(3):239–46.

    Article  CAS  PubMed  Google Scholar 

  • Sies H. Oxidative stress: introductory remarks. In: Sies H, editor. Oxidative stress. London: Academic; 1985. p. 1–8.

    Google Scholar 

  • Sies H, Jones DP. Oxidative stress. In: Fink G, editor. Encyclopedia of stress, 2nd edn, vol. 3. Amsterdam: Elsevier; 2007. p. 45–8.

    Chapter  Google Scholar 

  • Silva LA, Silveira PC, Ronsani MM, Souza PS, Scheffer D, Vieira LC, Benetti M, De Souza CT, Pinho RA. Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise. Cell Biochem Funct. 2011;29(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kapoor A, Bhatnagar A. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls. Chem Biol Interact. 2015;234:261–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu DX, Jiang F, Peng ZY. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Med Cell Longev. 2019;2019:5080843.

    Article  Google Scholar 

  • Sumida S, Doi T, Sakurai M, Yoshioka Y, Okamura K. Effect of a single bout of exercise and beta-carotene supplementation on the urinary excretion of 8-hydroxy-deoxyguanosine in humans. Free Radic Res. 1997;27(6):607–18.

    Article  CAS  PubMed  Google Scholar 

  • Toldy A, Stadler K, Sasvari M, Jakus J, Jung KJ, Chung HY, Berkes I, Nyakas C, Radak Z. The effect of exercise and nettle supplementation on oxidative stress markers in the rat brain. Brain Res Bull. 2005;65(6):487–93.

    Article  CAS  PubMed  Google Scholar 

  • Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003;189(1–2):41–54.

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJB, Moncol J, Izakovic MM, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions. 2006;160(1):1–40.

    Google Scholar 

  • Vincent HK, Bourguignon CM, Vincent KR, Weltman AL, Bryant M, Taylor G. Antioxidant supplementation lowers exercise-induced oxidative stress in young overweight adults. Obesity. 2006;14(12):2224–35.

    Article  CAS  PubMed  Google Scholar 

  • Wadley AJ, Turner JE, Aldred S. Factors influencing post-exercise plasma protein carbonyl concentration. Free Radic Res. 2016;50(4):375–84.

    Article  CAS  PubMed  Google Scholar 

  • Yada K, Roberts LA, Oginome N, et al. Effect of acacia polyphenol supplementation on exercise-induced oxidative stress in mice liver and skeletal muscle. Antioxidants-Basel. 2020;9(1):29.

    Article  CAS  Google Scholar 

  • Yimcharoen M, Kittikunnathum S, Suknikorn C, Nak-On W, Yeethong P, Anthony TG, Bunpo P. Effects of ascorbic acid supplementation on oxidative stress markers in healthy women following a single bout of exercise. J Int Soc Sports Nutr. 2019;16(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Frontiers in nutrition. 2019;6:48.

    Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological reviews. 2014;94(3):909–950.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yıldırım Kayacan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kayacan, Y., Yazar, H. (2022). Oxidative Stress Biomarkers in Exercise. In: Patel, V.B., Preedy, V.R. (eds) Biomarkers in Nutrition . Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-07389-2_48

Download citation

Publish with us

Policies and ethics