Skip to main content

Accelerating Simulated Quantum Annealing with GPU and Tensor Cores

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13289))

Included in the following conference series:

Abstract

Inspired by quantum annealing, simulated quantum annealing (SQA) mimics quantum tunneling effects on classical computers to perform annealing through a path-integral Monte Carlo simulation, which increases the potential to find the global optima faster than traditional annealing algorithms for large-size combinatorial optimization problems while today’s quantum annealing systems are of a limited number of qubits’. As previous studies have accelerated SQA with Graphics Processing Unit (GPU) and specialized hardware such as Field Programmable Gate Array (FPGA), we propose an innovative parallelizing strategy called hierarchical update to vastly improve the efficiency of parallel computing, which is capable of accelerating state-of-the-art SQA implementations further by 7X-47.2X based on our case studies. Furthermore, we develop a tensorizing scheme to leverage the Tensor Cores on modern GPUs to deliver up to 1.83X of additional speedup. Overall, our work solves fully-connected Ising models faster than any previous SQA work. Our solution outperforms existing GPU-based solutions by 86.6X and FPGA-based solutions by 14X.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We acknowledge the authors for sending us the experiment results.

  2. 2.

    The speedup is up to 120\(\times \) if (N,M) = (4096,512) is included.

  3. 3.

    SA can be treated as a special case of SQA with M = 1.

References

  1. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)

    Google Scholar 

  2. Venturelli, D., Kondratyev, A.: Reverse quantum annealing approach to portfolio optimization problems. Quantum Mach. Intell. 1(1), 17–30 (2019)

    Google Scholar 

  3. Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2(1), 1–7 (2012)

    Article  Google Scholar 

  4. Papalitsas, C., Andronikos, T., Giannakis, K., Theocharopoulou, G., Fanarioti, S.: A QUBO model for the traveling salesman problem with time windows. Algorithms 12(11), 224 (2019)

    Article  Google Scholar 

  5. Cipra, B.A.: The Ising model is NP-complete. SIAM News 33(6), 1–3 (2000)

    Google Scholar 

  6. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  MATH  Google Scholar 

  7. Heim, B., Ronnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348(6231), 215–217 (2015)

    Article  MATH  Google Scholar 

  8. Suzuki, M.: Relationship between D-dimensional quantal spin systems and (d+1)-dimensional Ising systems: equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Prog. Theor. Phy. 56(5), 1454–1469 (1976)

    Article  MATH  Google Scholar 

  9. Abdel-Aty, A.H., Khedr, A.N., Saddeek, Y.B., Youssef, A.A.: Thermal entanglement in quantum annealing processor. Int. J. Quantum Inf. 16(01), 1850006 (2018)

    Article  MATH  Google Scholar 

  10. Yamaoka, M., Yoshimura, C., Hayashi, M., Okuyama, T., Aoki, H., Mizuno, H.: A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing. IEEE J. Solid State Circ. 51(1), 303–309 (2015)

    Google Scholar 

  11. Waidyasooriya, H.M., Hariyama, M., Miyama, M.J., Ohzeki, M.: OpenCL-based design of an FPGA accelerator for quantum annealing simulation. J. Supercomput. 75(8), 5019–5039 (2019). https://doi.org/10.1007/s11227-019-02778-w

    Article  Google Scholar 

  12. Waidyasooriya, H., Hariyama, M.: Highly-parallel FPGA accelerator for simulated quantum annealing. IEEE Trans. Emerg. Topics Comput.9, 2019–2029 (2019)

    Google Scholar 

  13. Liu, C.Y., Waidyasooriya, H.M., Hariyama, M.: Data-transfer-bottleneck-less architecture for FPGA-based quantum annealing simulation. In: 2019 Seventh International Symposium on Computing and Networking (CANDAR), pp. 164–170. IEEE, November 2019

    Google Scholar 

  14. Okuyama, T., Hayashi, M., Yamaoka, M.: An Ising computer based on simulated quantum annealing by path integral monte carlo method. In: 2017 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–6. IEEE, November 2017

    Google Scholar 

  15. Weigel, M.: Performance potential for simulating spin models on GPU. J. Comput. Phys. 231(8), 3064–3082 (2012)

    Article  MATH  Google Scholar 

  16. Cook, C., Zhao, H., Sato, T., Hiromoto, M., Tan, S.X.D.: GPU based parallel Ising computing for combinatorial optimization problems in VLSI physical design. arXiv preprint (2018). arXiv:1807.10750

  17. Dwave, https://www.dwavesys.com/

  18. Dattani, N., Szalay, S., Chancellor, N.: Pegasus: the second connectivity graph for large-scale quantum annealing hardware (2019). arXiv preprint arXiv:1901.07636

  19. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)

    Google Scholar 

  20. JUQCS-G. https://www.fz-juelich.de/portal/DE/Home/home_node.html

  21. Markidis, S., Der Chien, S.W., Laure, E., Peng, I.B., Vetter, J.S.: Nvidia tensor core programmability, performance & precision. In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 522–531. IEEE, May 2018

    Google Scholar 

  22. Waidyasooriya, H.M., Hariyama, M.: A GPU-based quantum annealing simulator for fully-connected Ising models utilizing spatial and temporal parallelism. IEEE Access 8, 67929–67939 (2020)

    Article  Google Scholar 

  23. Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of Ising spin glasses. Science 348(6231), 215–217 (2015)

    Article  MATH  Google Scholar 

  24. Isakov, S.V., Zintchenko, I.N., Rønnow, T.F., Troyer, M.: Optimised simulated annealing for Ising spin glasses. Comput. Phys. Commun. 192, 265–271 (2015)

    Article  MATH  Google Scholar 

  25. Steinberg, A.P., Kosowsky, M., Fraden, S.: Simulations: the Ising Model (2013)

    Google Scholar 

  26. Gould, H., Tobochnik, J.: Statistical and Thermal Physics. University Press, Princeton (2010)

    Google Scholar 

  27. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Google Scholar 

  28. Suzuki, M., Miyashita, S., Kuroda, A.: Monte Carlo simulation of quantum spin systems. I. Prog. Theor. Phys. 58(5), 1377–1387 (1977)

    Article  MATH  Google Scholar 

  29. Bravyi, S.: Monte Carlo simulation of stoquastic Hamiltonians (2014). arXiv preprint arXiv:1402.2295

  30. Crosson, E., Harrow, A.W.: Simulated quantum annealing can be exponentially faster than classical simulated annealing. In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pp. 714–723. IEEE, October 2016

    Google Scholar 

  31. Bravyi, S., Divincenzo, D.P., Oliveira, R.I., Terhal, B.M.: The complexity of stoquastic local Hamiltonian problems (2006). arXiv preprint quant-ph/0606140

    Google Scholar 

  32. Bernal, D.E., Booth, K.E.C., Dridi, R., Alghassi, H., Tayur, S., Venturelli, D.: Integer programming techniques for minor-embedding in quantum annealers. In: Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296, pp. 112–129. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4_8

    Chapter  MATH  Google Scholar 

  33. NVIDIA ampere. https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

  34. cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html

  35. cutlass. https://github.com/NVIDIA/cutlass

  36. Gset. https://web.stanford.edu/~yyye/yyye/Gset/

  37. Benlic, U., Hao, J.K.: Breakout local search for the max-cutproblem. Eng. Appl. Artif. Intell. 26(3), 1162–1173 (2013)

    Google Scholar 

  38. Goto, H., et al.:High-performance combinatorial optimization based on classical mechanics. Sci. Adv. 7(6), eabe7953 (2021)

    Google Scholar 

  39. CUDA-9. https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

  40. WMMA. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Hao Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chung, YH., Shih, CJ., Hung, SH. (2022). Accelerating Simulated Quantum Annealing with GPU and Tensor Cores. In: Varbanescu, AL., Bhatele, A., Luszczek, P., Marc, B. (eds) High Performance Computing. ISC High Performance 2022. Lecture Notes in Computer Science, vol 13289. Springer, Cham. https://doi.org/10.1007/978-3-031-07312-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07312-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07311-3

  • Online ISBN: 978-3-031-07312-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics