Skip to main content

Electrical and Morphological Properties of Developing Motoneurons in Postnatal Mice and Early Abnormalities in SOD1 Transgenic Mice

  • Chapter
  • First Online:
Vertebrate Motoneurons

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 28))

Abstract

In this chapter, we review electrical and morphological properties of lumbar motoneurons during postnatal development in wild-type (WT) and transgenic superoxide dismutase 1 (SOD1) mice, models of amyotrophic lateral sclerosis. First we showed that sensorimotor reflexes do not develop normally in transgenic SOD1G85R pups. Fictive locomotor activity recorded in in vitro whole brainstem/spinal cord preparations was not induced in these transgenic SOD1G85R mice using NMDA and 5HT in contrast to WT mice. Further, abnormal electrical properties were detected as early as the second postnatal week in lumbar motoneurons of SOD1 mice while they develop clinical symptoms several months after birth. We compared two different strains of mice (G85R and G93A) at the same postnatal period using intracellular recordings and patch clamp recordings of WT and SOD1 motoneurons. We defined three types of motoneurons according to their discharge firing pattern (transient, sustained and delayed onset firing) when motor units are not yet mature. The delayed-onset firing motoneurons had the higher rheobase compared to the transient and sustained firing groups in the WT mice. We demonstrated hypoexcitability in the delayed onset-firing motoneurons of SOD1 mice. Intracellular staining of motoneurons revealed dendritic overbranching in SOD1 lumbar motoneurons that was more pronounced in the sustained firing motoneurons. We suggested that motoneuronal hypoexcitability is an early pathological sign affecting a subset of lumbar motoneurons in the spinal cord of SOD1 mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allene C (2006) Etude de la morphologie des motoneurones lombaires d’un modèle murin de sclérose latérale amyotrophique. Master Neuroscience, Aix Marseille Université, 28 pp

    Google Scholar 

  • Altman J, Sudarshan K (1975) Postnatal development of locomotion in the laboratory rat. Anim Behav 23:896–920

    Article  CAS  PubMed  Google Scholar 

  • Amendola J (2008) Developpement postnatal d’un modèle murin de Sclérose Latérale Amyotrophique. PhD thesis, Aix Marseille Université, Faculté de Médecine, 234 pp

    Google Scholar 

  • Amendola J, Durand J (2008) Morphological differences between wild-type and transgenic superoxide dismutase 1 lumbar motoneurons in postnatal mice. J Comp Neurol 511:329–341

    Article  PubMed  Google Scholar 

  • Amendola J, Verrier B, Roubertoux P, Durand J (2004) Altered sensorimotor development in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 20:2822–2826

    Article  PubMed  Google Scholar 

  • Amendola J, Gueritaud JP, Lamotte d’Incamps B et al (2007) Postnatal electrical and morphological abnormalities in lumbar motoneurons from transgenic mouse models of amyotrophic lateral sclerosis. Arch Ital Biol 145:311–323

    CAS  PubMed  Google Scholar 

  • Audesirk G, Cabell L, Kern M (1997) Modulation of neurite branching by protein phosphorylation in cultured rat hippocampal neurons. Brain Res Dev Brain Res 102:247–260

    Article  CAS  PubMed  Google Scholar 

  • Balice-Gordon RJ, Thompson WJ (1988) Synaptic rearrangements and alterations in motor unit properties in neonatal rat extensor digitorum longus muscle. J Physiol Lond 398:191–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boillee S, Vande Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  CAS  PubMed  Google Scholar 

  • Bories C (2004) Propriétés électriques des motoneurones lombaires au cours du développement postnatal chez la souris transgénique SOD1-G85R, un modèle de sclérose latérale amyotrophique. Master Neuroscience, Aix Marseille Université, p 30

    Google Scholar 

  • Bories C, Amendola J, Lamotte d’Incamps B, Durand J (2007) Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis. Eur J Neurosci 25:451–459

    Article  PubMed  Google Scholar 

  • Bruijn LI, Becher MW, Lee MK et al (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    Article  CAS  PubMed  Google Scholar 

  • Bruijn LI, Houseweart MK, Kato S et al (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854

    Article  CAS  PubMed  Google Scholar 

  • Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    Article  CAS  PubMed  Google Scholar 

  • Burke RE (1981) Motor units: anatomy, physiology and functional organization. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. section I, The nervous system, vol. II, motor control, part 1. American Physiological Society, Bethesda, pp 345–422

    Google Scholar 

  • Burke RE, Levine DN, Zajac FE 3rd. (1971) Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science 174:709–712. https://doi.org/10.1126/science.174.4010.709

    Article  CAS  PubMed  Google Scholar 

  • Cameron WE, He F, Kalipatnapu P, Jodkowski JS, Guthrie RD (1991) Morphometric analysis of phrenic motoneurons in the cat during postnatal development. J Comp Neurol 314:763–776

    Article  CAS  PubMed  Google Scholar 

  • Cline H, Haas K (2008) The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. J Physiol 586:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotel F, Antri M, Barthe JY, Orsal D (2009) Identified ankle extensor and flexor motoneurons display different firing profiles in the neonatal rat. J Neurosci 29:2748–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curfs MH, Gribnau AA, Dederen PJ (1993) Postnatal maturation of the dendritic fields of motoneuron pools supplying flexor and extensor muscles of the distal forelimb in the rat. Development 117(2):535–541

    Article  CAS  PubMed  Google Scholar 

  • Dal Canto MC, Gurney ME (1997) A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis. Acta Neuropathol 93:537–550

    Article  CAS  PubMed  Google Scholar 

  • Duch C, Vonhoff F, Ryglewski S (2008) Dendrite elongation and dendritic branching are affected separately by different forms of intrinsic motoneuron excitability. J Neurophysiol 100:2525–2536

    Article  PubMed  Google Scholar 

  • Durand J, Amendola J, Bories C, Lamotte d’Incamps B (2006) Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis. J Physiol Paris 99:211–220

    Article  PubMed  Google Scholar 

  • Durand J, Filipchuk A, Pambo-Pambo A et al (2015) Developing electrical properties of postnatal mouse lumbar motoneurons. Front Cell Neurosci 9:349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durand J, Filipchuk A, Pambo-Pambo A et al (2021) Hypoexcitability of motoneurons: an early pathological sign in ALS. Neuroscience 465:233–234

    Article  CAS  PubMed  Google Scholar 

  • Elbasiouny SM, Amendola J, Durand J, Heckman CJ (2010) Evidence from computer simulations for alterations in the membrane biophysical properties and dendritic processing of synaptic inputs in mutant superoxide dismutase-1 motoneurons. J Neurosci 30:5544–5558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanara P, Banerjee J, Hueck RV et al (2007) Stabilization of hyperdynamic microtubules is neuroprotective in amyotrophic lateral sclerosis. J Biol Chem 282:23465–23472

    Article  CAS  PubMed  Google Scholar 

  • Farah CA, Nguyen MD, Julien JP, Leclerc N (2003) Altered levels and distribution of microtubule-associated proteins before disease onset in a mouse model of amyotrophic lateral sclerosis. J Neurochem 84:77–86

    Article  CAS  PubMed  Google Scholar 

  • Filipchuk A (2011) Morphometrical and electrical features of motoneurons affected by amyotrophic lateral sclerosis. PhD thesis Aix Marseille Université, Faculté de Médecine, p 207

    Google Scholar 

  • Filipchuk AA, Durand J (2012) Postnatal dendritic development in lumbar motoneurons in mutant superoxide dismutase 1 mouse model of amyotrophic lateral sclerosis. Neuroscience 209:144–154

    Article  CAS  PubMed  Google Scholar 

  • Filipchuk AA, Durand J, Korogod SM (2008) Charge transfer effectiveness as electrotonic indicator of the structural differences between samples of dendritic morphology. Neurophysiology 40:497–501

    Article  Google Scholar 

  • Filipchuk AA, Pambo-Pambo A, Liabeuf S et al (2010) Evidence of early somato-dendritic alterations in lumbar motoneurons of SOD1 juvenile mice. International Symposium on ALS/MND, Orlando, USA. Amyotroph Lateral Scler 11:39–40

    Google Scholar 

  • Filipchuk AA, Pambo-Pambo A, Gaudel F et al (2021) Early hypoexcitability in a subgroup of spinal motoneurons in superoxide dismutase 1 transgenic mice, model of amyotrophic lateral sclerosis. Neuroscience 463:337–353. https://doi.org/10.1016/j.neuroscience.2021.01.39

    Article  CAS  PubMed  Google Scholar 

  • Fox WM (1965) Reflex ontogeny and behavioral development of the mouse. Anim Behav 13:234–241

    Article  CAS  PubMed  Google Scholar 

  • Friedrich P, Aszodi A (1991) MAP2: a sensitive cross-linker and adjustable spacer in dendritic architecture. FEBS Lett 295(1-3):5–9

    Article  CAS  PubMed  Google Scholar 

  • Gao BX, Ziskind-Conhaim L (1998) Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. J Neurophysiol 80:3047–3061

    Article  CAS  PubMed  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC et al (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264(5166):1772–1775

    Article  CAS  PubMed  Google Scholar 

  • Hadzipasic M, Tahvildari B, Nagy M, Bianc M, Horwich AL, McCormick DA (2014) Selective degeneration of a physiological subtype of spinal motor neuron in mice with SOD1-linked ALS. PNAS 111:16883–16888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hely TA, Graham B, Ooyen AV (2001) A computational model of dendrite elongation and branching based on MAP2 phosphorylation. J Theor Biol 210(3):375–384

    Article  CAS  PubMed  Google Scholar 

  • Henneman E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1347

    Article  CAS  PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    Article  CAS  PubMed  Google Scholar 

  • Irobi J, Almeida-Souza L, Asselbergh B et al (2010) Mutant HSPB8 causes motor neuron- specific neurite degeneration. Hum Mol Genet 19:3254–3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalb RG (1994) Regulation of motor neuron dendrite growth by NMDA receptor activation. Development 120:3063–3071

    Article  CAS  PubMed  Google Scholar 

  • Kanjhan R, Noakes PG, Bellingham MC (2016) Emerging roles of Filopodia and Dendritic spines in motoneuron plasticity during development and disease. Neural Plasticity, Article ID 3423267, 31 pages. https://doi.org/10.1155/2016/3423267

  • Kanning KC, Kaplan A, Henderson CE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci 33:409–440

    Article  CAS  PubMed  Google Scholar 

  • Kieran D, Hafezparast M, Bohnert S, Dick JR, Martin J, Schiavo G, Fisher EM, Greensmith L (2005) A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J Cell Biol 169:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi H, Doh-ura K, Kawashima T et al (1999) Immunohistochemical analysis of spinal cord lesions in amyotrophic lateral sclerosis using microtubule-associated protein 2 (MAP2) antibodies. Acta Neuropathol 97:13–21

    Article  CAS  PubMed  Google Scholar 

  • Korogod S, Tyc-Dumont S (2009) Electrical dynamics of the dendritic space. Cambridge University Press, Cambridge, p 211

    Book  Google Scholar 

  • Krishnan RV (1980) Cortico-spinal tract interaction in locomotor development and motor units formation: an hypothesis. Int J Neurosci 10:89–93

    Article  CAS  PubMed  Google Scholar 

  • Kuo JJ, Schonewille M, Siddique T et al (2004) Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice. J Neurophysiol 91:571–575

    Article  PubMed  Google Scholar 

  • Kuo JJ, Siddique T, Fu R, Heckman CJ (2005) Increased persistent Na(+) current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J Physiol 563:843–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee LJ, Lo FS, Erzurumlu RS (2005) NMDA receptor-dependent regulation of axonal and dendritic branching. J Neurosci 25:2304–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh PN, Swash M (1996) Motor neuron disease. Springer, London, p 468

    Google Scholar 

  • Leroy F, Lamotte d’Incamps B, Imhoff-Manuel RD et al (2014) Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis. elife 3:E04046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Brewer D, Burke RE, Ascoli GA (2005) Developmental changes in spinal motoneuron dendrites in neonatal mice. J Comp Neurol 483(3):304–317

    Article  PubMed  Google Scholar 

  • Libersat F, Duch C (2004) Mechanisms of dendritic maturation. Mol Neurobiol 29(3):303–320

    Article  CAS  PubMed  Google Scholar 

  • Maccioni RB, Cambiazo V (1995) Role of microtubule-associated proteins in the control of microtubule assembly. Physiol Rev 75(4):835–864

    Article  CAS  PubMed  Google Scholar 

  • Marchand-Pauvert V, Peyre I, Lackmy-Vallee A et al (2019) Absence of hyperexcitability of spinal motoneurons in patients with amyotrophic lateral sclerosis. J Physiol 597:5445–5467

    Article  CAS  PubMed  Google Scholar 

  • Martin E, Cazenave W, Cattaert D, Branchereau P (2013) Embryonic alteration of motoneuronal morphology induces hyperexcitability in the mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 54:116–126

    Article  CAS  PubMed  Google Scholar 

  • Martin E, Cazenave W, Allain AE, Cattaert D, Branchereau P (2020) Implication of 5-HT in the dysregulation of chloride homeostasis in prenatal spinal motoneurons from the G93A Mouse model of Amyotrophic lateral sclerosis. Int J Mol Sci 21(3):1107. https://doi.org/10.3390/ijms21031107

    Article  CAS  PubMed Central  Google Scholar 

  • Martínez-Silva ML, Imhoff-Manuel RD, Sharma A et al (2018) Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. elife 7:e30955

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthews PBC (1982) Where does Sherrington’s “muscular sense” originate – muscles, joints, corollary discharges. Annu Rev Neurosci 5:189–218

    Article  CAS  PubMed  Google Scholar 

  • Mead RJ, Bennett EJ, Kennerley AJ et al (2011) Optimised and rapid pre-clinical screening in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS). PLoS One 6:e23244. https://doi.org/10.1371/journal.pone.0023244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentis GZ, Diaz E, Moran LB, Navarrete R (2007) Early alterations in the electrophysiological properties of rat spinal motoneurones following neonatal axotomy. J Physiol 582(Pt 3):1141–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentis GZ, Blivis D, Liu W, Drobac E, Crowder ME, Kong L, Alvarez FJ, Sumner CJ, O’Donovan MJ (2011) Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69:453–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milan L, Barrière G, De Deurwaerdère P et al (2014) Monoaminergic control of spinal locomotor networks in SOD1G93A newborn mice. Front Neural Circuits 8:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mynlieff M, Beam KG (1992) Characterization of voltage-dependent calcium currents in mouse motoneurons. J Neurophysiol 68:85–92

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi ST, Whelan PJ (2010) Diversification of intrinsic motoneuron electrical properties during normal development and botulinum toxin-induced muscle paralysis in early postnatal mice. J Neurophysiol 103:2833–2845

    Article  CAS  PubMed  Google Scholar 

  • Navarrete R, Vrbova G (1983) Changes of activity patterns in slow and fast muscles during postnatal-development. Dev Brain Res 8(1):11–19

    Article  Google Scholar 

  • Navarrete R, Vrbova G (1993) Activity-dependent interactions between motoneurones and muscles: their role in the development of the motor unit. Prog Neurobiol 41:93–124

    Article  CAS  Google Scholar 

  • Ni X, Martin-Caraballo M (2010) Differential effect of glutamate receptor blockade on dendritic outgrowth in chicken lumbar motoneurons. Neuropharmacology 58:593–604

    Article  CAS  PubMed  Google Scholar 

  • Núñez-Abades PA, Cameron WE (1995) Morphology of developing rat genioglossal motoneurons studied in vitro: relative changes in diameter and surface area of somata and dendrites. J Comp Neurol 353:129–142

    Article  PubMed  Google Scholar 

  • Nunez-Abades PA, He F, Barrionuevo G, Cameron WE (1994) Morphology of developing rat genioglossal motoneurons studied in vitro: changes in length, branching pattern, and spatial distribution of dendrites. J Comp Neurol 339:401–420

    Article  CAS  PubMed  Google Scholar 

  • Pambo-Pambo AB (2010) Etude du développement postnatal des motoneurones lombaires de souches de souris transgéniques, modèles de la sclérose latérale amyotrophique. PhD thesis Aix Marseille Université, Faculté de Médecine, p 258

    Google Scholar 

  • Pambo-Pambo A, Durand J, Gueritaud JP (2009) Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G(93A-Low) mice. J Neurophysiol 102:3627–3642

    Article  CAS  PubMed  Google Scholar 

  • Parrish JZ, Emoto K, Kim MD, Jan YN (2007) Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci 30:399–423

    Article  CAS  PubMed  Google Scholar 

  • Pieri M, Albo F, Gaetti C, Spalloni A, Bengtson CP, Longone P, Cavalcanti S, Zona C (2003) Altered excitability of motor neurons in a transgenic mouse model of familial amyotrophic lateral sclerosis. Neurosci Lett 351:153–156

    Article  CAS  PubMed  Google Scholar 

  • Pun S, Santos AF, Saxena S, Xu L, Caroni P (2006) Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 9:408–419

    Article  CAS  PubMed  Google Scholar 

  • Quinlan KA, Schuster JE, Fu R, Siddique T, Heckman CJ (2011) Altered postnatal maturation of electrical properties in spinal motoneurons in an ALS mouse model. J Physiol 589:2245–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raoul C, Estevez AG, Nishimune H et al (2002) Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations. Neuron 35:1067–1083

    Article  CAS  PubMed  Google Scholar 

  • Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14:248–264

    Article  CAS  PubMed  Google Scholar 

  • Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  • Rossi-Durand C (2006) Proprioception and myoclonus. Neurophysiol Clin 36:299–308

    Article  CAS  PubMed  Google Scholar 

  • Russier M, Carlier E, Ankri N et al (2003) A-, T-, and H-type currents shape intrinsic firing of developing rat abducens motoneurons. J Physiol 549:21–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sances S, Bruijn L, Chandran S, Eggan K, Ho R, Klim J, Livesey MR, Lowry E, Macklis JD, Rushton D, Sadegh C, Sareen D, Wichterle H, Zhang SC, Svendsen CN (2016) Modeling ALS using motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 19:542–553. https://doi.org/10.1038/nn.4273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena S, Roselli F, Singh K et al (2013) Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival. Neuron 80:80–96

    Article  CAS  PubMed  Google Scholar 

  • Schilling K, Dickinson MH, Connor JA, Morgan JI (1991) Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron 7(6):891–902

    Article  CAS  PubMed  Google Scholar 

  • Sepulveda FJ, Bustos FJ, Inostroza E et al (2010) Differential roles of NMDA receptor subtypes NR2A and NR2B in dendritic branch development and requirement of RasGRF1. J Neurophysiol 103:1758–1770

    Article  CAS  PubMed  Google Scholar 

  • Spalloni A, Origlia N, Sgobio C et al (2011) Postsynaptic alteration of NR2A subunit and defective autophosphorylation of alphaCaMKII at Threonine-286 contribute to abnormal plasticity and morphology of upper motor neurons in presymptomatic SOD1G93A mice, a murine model for amyotrophic lateral sclerosis. Cereb Cortex 21(4):796–805

    Article  CAS  PubMed  Google Scholar 

  • Swash M, Schwartz MS (1995) Motoneuron disease: the clinical syndrome in motor neuron disease. Leigh and Swash M (eds) Springer, London, pp 1–17

    Google Scholar 

  • Ulfhake B, Cullheim S (1988) Postnatal development of cat hind limb motoneurons. III: changes in size of motoneurons supplying the triceps surae muscle. J Comp Neurol 278:103–120

    Article  CAS  PubMed  Google Scholar 

  • Ulfhake B, Cullheim S, Franson P (1988) Postnatal development of cat hind limb motoneurons. I: changes in length, branching structure, and spatial distribution of dendrites of cat triceps surae motoneurons. J Comp Neurol 278:69–87

    Article  CAS  PubMed  Google Scholar 

  • Van Zundert B, Peuscher MH, Hynynen M et al (2008) Neonatal neuronal circuitry shows hyperexcitable disturbance in a Mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Neurosci 28:10864–10874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Zundert B, Izaurieta P, Fritz E, Alvarez FJ (2012) Early pathogenesis in the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Cell Biochem 113:3301–3312

    Article  PubMed  CAS  Google Scholar 

  • Vaughn JE (1989) Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3(3):255–285

    Article  CAS  PubMed  Google Scholar 

  • Vaughn JE, Barber RP, Sims TJ (1988) Dendritic development and preferential growth into synaptogenic fields: a quantitative study of Golgi-impregnated spinal motor neurons. Synapse 2(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Viana F, Bayliss DA, Berger AJ (1995) Repetitive firing properties of developing rat brainstem motoneurones. J Physiol 486:745–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinay L, Brocard F, Clarac F (2000a) Differential maturation of motoneurons innervating ankle flexor and extensor muscles in the neonatal rat. Eur J Neurosci 12(12):4562–4566

    Article  CAS  PubMed  Google Scholar 

  • Vinay L, Brocard F, Pflieger JF, Simeoni-Alias J, Clarac F (2000b) Perinatal development of lumbar motoneurons and their inputs in the rat. Brain Res Bull 53:635–647

    Article  CAS  PubMed  Google Scholar 

  • Vinay L, Brocard F, Clarac F, Norreel JC, Pearlstein E, Pflieger JF (2002) Development of posture and locomotion: an interplay of endogenously generated activities and neurotrophic actions by descending pathways. Brain Res Rev 40:118–129

    Article  PubMed  Google Scholar 

  • Vinsant S, Mansfield C, Jimenez-Moreno R et al (2013) Characterization of early pathogenesis in the SOD1(G93A) mouse model of ALS: part II, results and discussion. Brain Behav 3:431–457

    Article  PubMed  PubMed Central  Google Scholar 

  • Vrbova G (2007) Understanding motoneurone development explains spinal muscular atrophy. Arch Ital Biol 145:325–335

    CAS  PubMed  Google Scholar 

  • Williamson TL, Cleveland D (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 2:50–56

    Article  CAS  PubMed  Google Scholar 

  • Wooley CM, Sher RB, Kale A, Frankel WN, Cox GA, Seburn KL (2005) Gait analysis detects early changes in transgenic SOD1(G93A) mice. Muscle Nerve 32:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Strom AL, Fukada K, Lee S, Hayward LJ, Zhu H (2007) Interaction between familial amyotrophic lateral sclerosis (ALS)-linked SOD1 mutants and the dynein complex. J Biol Chem 282:16691–16699

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Durand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durand, J., Filipchuk, A. (2022). Electrical and Morphological Properties of Developing Motoneurons in Postnatal Mice and Early Abnormalities in SOD1 Transgenic Mice. In: O'Donovan, M.J., Falgairolle, M. (eds) Vertebrate Motoneurons. Advances in Neurobiology, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-031-07167-6_14

Download citation

Publish with us

Policies and ethics