Skip to main content

Global Sensitivity Analysis for the Interpretation of Machine Learning Algorithms

  • Chapter
  • First Online:
Artificial Intelligence, Big Data and Data Science in Statistics

Abstract

Global sensitivity analysis aims to quantify the importance of model input variables for a model response. We highlight the role sensitivity analysis can play in interpretable machine learning and provide a short survey on sensitivity analysis with a focus on global variance-based sensitivity measures like Sobol’ indices and Shapley values. We discuss the Monte Carlo estimation of various Sobol’ indices as well as their graphical presentation in the so-called FANOVA graphs. Global sensitivity analysis is applied to an analytical example, a Kriging model of a piston simulator and a neural net model of the resistance of yacht hulls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amberti, D.: mistat: Data Sets, Functions and Examples from the Book: “Modern Industrial Statistics” by Kenett, Zacks and Amberti (2018). https://CRAN.R-project.org/package=mistat. R package version 1.0-5

  2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Haussler, D. (ed.) Proceedings of the Fifth Annual Workshop on Computational Learning Theory – COLT ’92, pp. 144–152. ACM Press, New York (1992). https://doi.org/10.1145/130385.130401

    Chapter  Google Scholar 

  3. Cheng, K., Lu, Z., Zhou, Y., Shi, Y., Wei, Y.: Global sensitivity analysis using support vector regression. Appl. Math. Model. 49(4), 587–598 (2017). https://doi.org/10.1016/j.apm.2017.05.026

    Article  MathSciNet  MATH  Google Scholar 

  4. Cortez, P., Embrechts, M.J.: Using sensitivity analysis and visualization techniques to open black box data mining models. Inf. Sci. 225(1), 1–17 (2013). https://doi.org/10.1016/j.ins.2012.10.039

    Article  Google Scholar 

  5. Cukier, R., Levine, H., Shuler, K.: Nonlinear sensitivity analysis of multiparameter model systems. J. Comput. Phys. 26(1), 1–42 (1978). https://doi.org/10.1016/0021-9991(78)90097-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9(3) (1981). https://doi.org/10.1214/AOS/1176345462

  7. Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles. Ann. Appl. Stat. 2(3), 916–954 (2008). https://doi.org/10.1214/07-AOAS148

    Article  MathSciNet  MATH  Google Scholar 

  8. Fruth, J., Roustant, O., Muehlenstaedt, T.: The fanovaGraph Package: Visualization of Interaction Structures and Construction of Block-additive Kriging Models (2013). https://hal.archives-ouvertes.fr/hal-00795229

  9. Fruth, J., Roustant, O., Kuhnt, S.: Total interaction index: a variance-based sensitivity index for second-order interaction screening. J. Stat. Plann. Infer. 147, 212–223 (2014). https://doi.org/10.1016/j.jspi.2013.11.007

    Article  MathSciNet  MATH  Google Scholar 

  10. Fruth, J., Muehlenstaedt, T., Roustant, O., Jastrow, M., Kuhnt, S.: fanovaGraph: building Kriging Models from FANOVA Graphs (2020). https://CRAN.R-project.org/package=fanovaGraph. R package version 1.5

  11. Gerritsma, J., Onnink, R., Versluis, A.: Geometry, resistance and stability of the delft systematic yacht hull series. Int. Shipbuild. Prog. 28(328), 276–297 (1981). https://doi.org/10.3233/ISP-1981-2832801

    Article  Google Scholar 

  12. Hastie, T., Tibshirani, R.J.: Generalised additive models. In: Monographs on Statistics and Applied Probability, vol. 43. Chapman and Hall, London (1990)

    Google Scholar 

  13. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52(1), 1–17 (1996). https://doi.org/10.1016/0951-8320(96)00002-6

    Article  Google Scholar 

  14. Iooss, B., Lemaître, P.: A review on global sensitivity analysis methods. In: Dellino, G., Meloni, C. (eds.) Uncertainty Management in Simulation-Optimization of Complex Systems, Operations Research/Computer Science Interfaces Series, vol. 59, pp. 101–122. Springer US, Boston (2015). https://doi.org/10.1007/978-1-4899-7547-8_5

    Google Scholar 

  15. Iooss, B., Veiga, S.D., Janon, A., Pujol, G., with contributions from Baptiste Broto, Boumhaout, K., Delage, T., Amri, R.E., Fruth, J., Gilquin, L., Guillaume, J., Le Gratiet, L., Lemaitre, P., Marrel, A., Meynaoui, A., Nelson, B.L., Monari, F., Oomen, R., Rakovec, O., Ramos, B., Roustant, O., Song, E., Staum, J., Sueur, R., Touati, T., Weber, F.: Sensitivity: global Sensitivity Analysis of Model Outputs (2020). https://CRAN.R-project.org/package=sensitivity. R package version 1.22.1

  16. Ishigami, T., Homma, T.: An importance quantification technique in uncertainty analysis for computer models. In: 1990 Proceedings of First International Symposium on Uncertainty Modeling and Analysis, pp. 398–403. IEEE Computer Society Press, Washington (1990). https://doi.org/10.1109/ISUMA.1990.151285

  17. Ivanov, M., Kuhnt, S.: A parallel optimization algorithm based on FANOVA decomposition. Qual. Reliab. Eng. Int. 30(7), 961–974 (2014). https://doi.org/10.1002/qre.1710

    Article  Google Scholar 

  18. Jansen, M.J.: Analysis of variance designs for model output. Comput. Phys. Commun. 117(1–2), 35–43 (1999). https://doi.org/10.1016/S0010-4655(98)00154-4

    Article  MATH  Google Scholar 

  19. Kenett, R., Zacks, S., Amberti, D.: Modern Industrial Statistics: With Applications in R, MINITAB and JMP, 2nd edn. Statistics in Practice. Wiley, Chichester (2014)

    Google Scholar 

  20. Kucherenko, S., Rodriguez-Fernandez, M., Pantelides, C., Shah, N.: Monte Carlo evaluation of derivative-based global sensitivity measures. Reliab. Eng. Syst. Saf. 94(7), 1135–1148 (2009). https://doi.org/10.1016/j.ress.2008.05.006

    Article  Google Scholar 

  21. Liu, R., Owen, A.B.: Estimating mean dimensionality of analysis of variance decompositions. J. Am. Stat. Assoc. 101(474), 712–721 (2006). https://doi.org/10.1198/016214505000001410

    Article  MathSciNet  MATH  Google Scholar 

  22. Lopez Gonzalez, R.: Neural networks for variational problems in engineering. PhD Thesis. Technical University of Catalonia (2008)

    Google Scholar 

  23. McCullagh, P., Nelder, J.A.: Generalized linear models. Monographs on Statistics and Applied Probability, vol. 37, 2nd edn. Chapman and Hall, London (1989)

    Google Scholar 

  24. Molnar, C.: Interpretable Machine Learning. lulu.com (2020)

    Google Scholar 

  25. Molnar, C., Casalicchio, G., Bischl, B.: Quantifying model complexity via functional decomposition for better post-hoc interpretability. In: Cellier, P., Driessens, K. (eds.) Machine Learning and Knowledge Discovery in Databases. Communications in Computer and Information Science, vol. 1167, pp. 193–204. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-43823-4_17

    Google Scholar 

  26. Muehlenstaedt, T., Roustant, O., Carraro, L., Kuhnt, S.: Data-driven kriging models based on Fanova-decomposition. Stat. Comput. 22(3), 723–738 (2012). https://doi.org/10.1007/s11222-011-9259-7

    Article  MathSciNet  MATH  Google Scholar 

  27. Owen, A.B.: Sobol’ indices and Shapley value. SIAM/ASA J. Uncertain. Quantif. 2(1), 245–251 (2014). https://doi.org/10.1137/130936233

    Article  MathSciNet  MATH  Google Scholar 

  28. Roustant, O., Fruth, J., Iooss, B., Kuhnt, S.: Crossed-derivative based sensitivity measures for interaction screening. Math. Comput. Simul. 105, 105–118 (2014). https://doi.org/10.1016/j.matcom.2014.05.005

    Article  MathSciNet  MATH  Google Scholar 

  29. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis. The Primer. John Wiley & Sons, Ltd, Chichester (2007). https://doi.org/10.1002/9780470725184

  30. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games (AM-28), vol. II, pp. 307–318. Princeton University Press, Princeton (1953). https://doi.org/10.1515/9781400881970-018

    Google Scholar 

  31. Sobol, I.M.: Sensitivity analysis for non-linear mathematical models. Math. Modeling Comput. Experiment 1(4), 407–414 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Sobol, I., Gershman, A.: On an alternative global sensitivity estimators. In: Proceedings of SAMO 1995, Belgirate, pp. 40–42 (1995)

    Google Scholar 

  33. Song, E., Nelson, B.L., Staum, J.: Shapley effects for global sensitivity analysis: theory and computation. SIAM/ASA J. Uncertain. Quantif. 4(1), 1060–1083 (2016). https://doi.org/10.1137/15M1048070

    Article  MathSciNet  MATH  Google Scholar 

  34. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014). https://doi.org/10.1007/s10115-013-0679-x

    Article  Google Scholar 

  35. Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002). ISBN 0-387-95457-0. http://www.stats.ox.ac.uk/pub/MASS4

    Book  MATH  Google Scholar 

  36. Winter, E.: The Shapley value. In: Handbook of Game Theory with Economic Applications, vol. 3, pp. 2025–2054. Elsevier, Amsterdam (2002). https://doi.org/10.1016/S1574-0005(02)03016-3

  37. Zhang, P.: A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model. Appl. Soft Comput. 85, 105859 (2019). https://doi.org/10.1016/j.asoc.2019.105859

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the Deutsche Forschungsgemeinschaft (SFB 823, project B1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Kuhnt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuhnt, S., Kalka, A. (2022). Global Sensitivity Analysis for the Interpretation of Machine Learning Algorithms. In: Steland, A., Tsui, KL. (eds) Artificial Intelligence, Big Data and Data Science in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-07155-3_6

Download citation

Publish with us

Policies and ethics