Skip to main content

Nuclear Magnetic Resonance (NMR): Modern Methods

  • Chapter
  • First Online:
Springer Handbook of Advanced Catalyst Characterization

Abstract

Amplification of the available magnetic field strengths in the previous decades made modern solid-state NMR one of the most informative tools in many physical and chemical areas including heterogeneous catalysis. However, in some cases, the magnetic field strength is not the decisive factor in the experiment. That is where modern advanced techniques such as intricate pulse programs, correlation experiments, dynamic nuclear polarization, and selective isotope enrichment come in handy. This review does not aim to encompass every possible application of solid-state NMR in catalysis, but the authors have tried to include the examples of the most advanced and state-of-the-art experiments with supported oxide catalysts, zeolites, and metal-organic frameworks that allowed tackling even the most challenging problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Purcell, E.M., Torrey, H.C., Pound, R.V.: Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946)

    CAS  Google Scholar 

  2. Bloch, F., Hansen, W.W., Packard, M.: Nuclear induction. Phys. Rev. 69, 127–127 (1946)

    Google Scholar 

  3. Derouane, E.G., Fraissard, J., Fripiat, J.J., Stone, W.E.E.: NMR studies in adsorption and heterogeneous catalysis. Catal. Rev. 7, 121–212 (1972)

    CAS  Google Scholar 

  4. Bell, A.T., Pines, A. (eds.): NMR Techniques in Catalysis. Marcel Dekker Inc., New York (1994)

    Google Scholar 

  5. Harris, R.K.: NMR techniques in catalysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 51, 1535–1536 (1995)

    Google Scholar 

  6. Hunger, M., Wang, W.: Characterization of solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy. Adv. Catal., 149–225 (2006)

    Google Scholar 

  7. Lapina, O.B., Mastikhin, V.M., Shubin, A.A., Krasilnikov, V.N., Zamaraev, K.I.: 51V Solid state NMR studies of vanadia based catalysts. Prog. Nucl. Magn. Reson. Spectrosc. 24, 457–525 (1992)

    CAS  Google Scholar 

  8. Lapina, O.B., Terskikh, V.V.: Quadrupolar metal NMR of oxide materials including catalysts. In: Encyclopedia of Magnetic Resonance. Wiley, Chichester (2011)

    Google Scholar 

  9. Copéret, C., Liao, W.-C., Gordon, C.P., Ong, T.-C.: Active sites in supported single-site catalysts: an NMR perspective. J. Am. Chem. Soc. 139, 10588–10596 (2017)

    Google Scholar 

  10. Grekov, D., Vancompernolle, T., Taoufik, M., Delevoye, L., Gauvin, R.M.: Solid-state NMR of quadrupolar nuclei for investigations into supported organometallic catalysts: scope and frontiers. Chem. Soc. Rev. 47, 2572–2590 (2018)

    CAS  Google Scholar 

  11. Hunger, M.: In situ NMR spectroscopy in heterogeneous catalysis. Catal. Today. 97, 3–12 (2004)

    CAS  Google Scholar 

  12. Blasco, T.: Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chem. Soc. Rev. 39, 4685 (2010)

    CAS  Google Scholar 

  13. Chmelik, C., Kärger, J.: In situ study on molecular diffusion phenomena in nanoporous catalytic solids. Chem. Soc. Rev. 39, 4864 (2010)

    CAS  Google Scholar 

  14. Ivanova, I.I., Kolyagin, Y.G.: Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions. Chem. Soc. Rev. 39, 5018 (2010)

    CAS  Google Scholar 

  15. Stepanov, A.G., Parmon, V.N., Freude, D.: In situ NMR spectroscopy in heterogeneous catalysis: kinetic study of hydrocarbon conversion mechanisms. Kinet. Catal. 48, 521–534 (2007)

    CAS  Google Scholar 

  16. Lapina, O.B.: Modern ssNMR for heterogeneous catalysis. Catal. Today. 285, 179–193 (2017)

    CAS  Google Scholar 

  17. Lapina, O.B., Shubin, A.A., Terskikh, V.V.: Solid-state NMR of oxide-based materials. In: Modern Magnetic Resonance, pp. 1–37. Springer International Publishing, Cham (2016)

    Google Scholar 

  18. Pecher, O., Carretero-González, J., Griffith, K.J., Grey, C.P.: Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017)

    CAS  Google Scholar 

  19. Hoult, D., Richards, R.: The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24, 71–85 (1976)

    Google Scholar 

  20. Pickard, C.J., Mauri, F.: All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 63, 245101 (2001)

    Google Scholar 

  21. Bonhomme, C., Gervais, C., Babonneau, F., Coelho, C., Pourpoint, F., Azaïs, T., Ashbrook, S.E., Griffin, J.M., Yates, J.R., Mauri, F., Pickard, C.J.: First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist’s point of view. Chem. Rev. 112, 5733–5779 (2012)

    CAS  Google Scholar 

  22. Charpentier, T.: The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. Solid State Nucl. Magn. Reson. 40, 1–20 (2011)

    CAS  Google Scholar 

  23. Ashbrook, S.E., McKay, D.: Combining solid-state NMR spectroscopy with first-principles calculations – a guide to NMR crystallography. Chem. Commun. 52, 7186–7204 (2016)

    CAS  Google Scholar 

  24. Perras, F.A.: Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei. Pure Appl. Chem. 88, 95–111 (2016)

    CAS  Google Scholar 

  25. NMR crystallography. Preface (Ed. by Luis Mafra), Solid State Nucl. Magn. Reson. 65, 1 (2015)

    Google Scholar 

  26. Bouchevreau, B., Martineau, C., Mellot-Draznieks, C., Tuel, A., Suchomel, M.R., Trébosc, J., Lafon, O., Amoureux, J.-P., Taulelle, F.: High-resolution structural characterization of two layered aluminophosphates by synchrotron powder diffraction and NMR crystallographies. Chem. Mater. 25, 2227–2242 (2013)

    CAS  Google Scholar 

  27. Martineau, C., Senker, J., Taulelle, F.: NMR crystallography. In: Webb, G.A. (ed.) Annu. Reports NMR Spectrosc, pp. 1–57. Elsevier Inc. Oxford, UK (2014)

    Google Scholar 

  28. Martineau, C.: NMR crystallography: applications to inorganic materials. Solid State Nucl. Magn. Reson. 63–64, 1–12 (2014)

    Google Scholar 

  29. Taulelle, F., Bouchevreau, B., Martineau, C.: NMR crystallography driven structure determination: nanoporous materials. CrystEngComm. 15, 8613 (2013)

    CAS  Google Scholar 

  30. Brouwer, D.H., Enright, G.D.: Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29 Si magnetic shielding tensors. J. Am. Chem. Soc. 130, 3095–3105 (2008)

    CAS  Google Scholar 

  31. Sneddon, S., Kahr, J., Orsi, A.F., Price, D.J., Dawson, D.M., Wright, P.A., Ashbrook, S.E.: Investigation of zeolitic imidazolate frameworks using 13 C and 15 N solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 87, 54–64 (2017)

    CAS  Google Scholar 

  32. Demko, B.A., Wasylishen, R.E.: Solid-state selenium-77 NMR. Prog. Nucl. Magn. Reson. Spectrosc. 54, 208–238 (2009)

    CAS  Google Scholar 

  33. Ashbrook, S.E., Mitchell, M.R., Sneddon, S., Moran, R.F., de los Reyes, M., Lumpkin, G.R., Whittle, K.R.: New insights into phase distribution, phase composition and disorder in Y2(Zr,Sn)2O7 ceramics from NMR spectroscopy. Phys. Chem. Chem. Phys. 17, 9049–9059 (2015)

    CAS  Google Scholar 

  34. Carlton, L.: Rhodium-103 NMR. Annu. Rep. NMR Spectrosc. 63, 49–178 (2008)

    CAS  Google Scholar 

  35. Chen, F., Wasylishen, R.E.: Structural characterization of silver dialkylphosphite salts using solid-state 109 Ag and 31 P NMR spectroscopy, IR spectroscopy and DFT calculations. Magn. Reson. Chem. 48, 270–275 (2010)

    CAS  Google Scholar 

  36. Kuttatheyil, A.V., Handke, M., Bergmann, J., Lässig, D., Lincke, J., Haase, J., Bertmer, M., Krautscheid, H.: 113 Cd solid-state NMR for probing the coordination sphere in metal-organic frameworks. Chem. - A Eur. J. 21, 1118–1124 (2015)

    CAS  Google Scholar 

  37. Qi, G., Wang, Q., Xu, J., Wu, Q., Wang, C., Zhao, X., Meng, X., Xiao, F., Deng, F.: Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy. Commun. Chem. 1, 22 (2018)

    Google Scholar 

  38. Pöppler, A.-C., Demers, J.-P., Malon, M., Singh, A.P., Roesky, H.W., Nishiyama, Y., Lange, A.: Ultrafast magic-angle spinning: benefits for the acquisition of ultrawide-line NMR spectra of heavy spin-1/2 nuclei. ChemPhysChem. 17, 812–816 (2016)

    Google Scholar 

  39. Haouas, M., Trébosc, J., Roch-Marchal, C., Cadot, E., Taulelle, F., Martineau-Corcos, C.: High-field 95 Mo and 183 W static and MAS NMR study of polyoxometalates. Magn. Reson. Chem. 55, 902–908 (2017)

    CAS  Google Scholar 

  40. Marbella, L.E., Millstone, J.E.: NMR Techniques for Noble Metal Nanoparticles. Chem. Mater. 27, 2721–2739 (2015)

    CAS  Google Scholar 

  41. Harris, K.J., Lupulescu, A., Lucier, B.E.G., Frydman, L., Schurko, R.W.: Broadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR spectroscopy. J. Magn. Reson. 224, 38–47 (2012)

    CAS  Google Scholar 

  42. Alkan, F., Dybowski, C.: Spin-orbit effects on the 125Te magnetic-shielding tensor: a cluster-based ZORA/DFT investigation. Solid State Nucl. Magn. Reson. 95, 6–11 (2018)

    CAS  Google Scholar 

  43. Dybowski, C., Neue, G.: Solid state 207Pb NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 41, 153–170 (2002)

    CAS  Google Scholar 

  44. Ashbrook, S.E., Smith, M.E.: Oxygen-17 NMR of inorganic materials. In: Encyclopedia of Magnetic Resonance. Wiley, Chichester (2011)

    Google Scholar 

  45. Ashbrook, S.E., Smith, M.E.: Solid state 17O NMR—an introduction to the background principles and applications to inorganic materials. Chem. Soc. Rev. 35, 718–735 (2006)

    CAS  Google Scholar 

  46. Huo, H., Peng, L., Grey, C.P.: Measuring Brønsted acid site O−H distances in zeolites HY and HZSM-5 with low-temperature 17O−1H double resonance MAS NMR spectroscopy. J. Phys. Chem. C. 115, 2030–2037 (2011)

    CAS  Google Scholar 

  47. Huo, H., Peng, L., Gan, Z., Grey, C.P.: Solid-state MAS NMR studies of Brønsted acid sites in zeolite H-Mordenite. J. Am. Chem. Soc. 134, 9708–9720 (2012)

    CAS  Google Scholar 

  48. Wang, X., Han, X., Huang, Y., Sun, J., Xu, S., Bao, X.: 17O solid-state NMR study on the size dependence of oxygen activation over silver catalysts. J. Phys. Chem. C. 116, 25846–25851 (2012)

    CAS  Google Scholar 

  49. He, P., Xu, J., Terskikh, V.V., Sutrisno, A., Nie, H.-Y., Huang, Y.: Identification of nonequivalent framework oxygen species in metal–organic frameworks by 17 O solid-state NMR. J. Phys. Chem. C. 117, 16953–16960 (2013)

    CAS  Google Scholar 

  50. Wang, W.D., Lucier, B.E.G., Terskikh, V.V., Wang, W., Huang, Y.: Wobbling and hopping: studying dynamics of CO2 adsorbed in metal–organic frameworks via 17O solid-state NMR. J. Phys. Chem. Lett. 5, 3360–3365 (2014)

    CAS  Google Scholar 

  51. Dai, Y., Hung, I., Gan, Z., Wu, G.: Probing nitrite ion dynamics in NaNO 2 crystals by solid-state 17 O NMR. Concepts Magn. Reson. Part A. 45A, e21409 (2016)

    Google Scholar 

  52. Kim, N.: Probing oxygen motion in disordered anionic conductors with 17O and 51V MAS NMR spectroscopy. Science (80-). 297, 1317 (2002)

    CAS  Google Scholar 

  53. Kong, X., O’Dell, L.A., Terskikh, V., Ye, E., Wang, R., Wu, G.: Variable-temperature 17 O NMR studies allow quantitative evaluation of molecular dynamics in organic solids. J. Am. Chem. Soc. 134, 14609–14617 (2012)

    CAS  Google Scholar 

  54. Moudrakovski, I.L.: Chapter Four: Recent advances in solid-state NMR of alkaline earth elements. In: Annu. Reports NMR Spectrosc, pp. 129–240 (2013)

    Google Scholar 

  55. Xu, J., Terskikh, V.V., Huang, Y.: Resolving multiple non-equivalent metal sites in magnesium-containing metal-organic frameworks by natural abundance 25Mg solid-state NMR spectroscopy. Chem. - A Eur. J. 19, 4432–4436 (2013)

    CAS  Google Scholar 

  56. Xu, J., Terskikh, V.V., Huang, Y.: 25Mg solid-state NMR: a sensitive probe of adsorbing guest molecules on a metal center in metal–organic framework CPO-27-mg. J. Phys. Chem. Lett. 4, 7–11 (2013)

    CAS  Google Scholar 

  57. Moudrakovski, I.L., Ripmeester, J.A.: 39K NMR of solid potassium salts at 21T: effect of quadrupolar and chemical shift tensors. J. Phys. Chem. B. 111, 491–495 (2007)

    CAS  Google Scholar 

  58. Zhang, L., Huang, Y.: An investigation into the crystallization of low-silica X zeolite. J. Porous. Mater. 22, 843–850 (2015)

    CAS  Google Scholar 

  59. Xu, J., Lucier, B.E.G., Lin, Z., Sutrisno, A., Terskikh, V.V., Huang, Y.: New insights into the short-range structures of microporous titanosilicates as revealed by 47/49Ti, 23Na, 39K, and 29Si solid-state NMR spectroscopy. J. Phys. Chem. C. 118, 27353–27365 (2014)

    CAS  Google Scholar 

  60. Laurencin, D., Smith, M.E.: Development of 43Ca solid state NMR spectroscopy as a probe of local structure in inorganic and molecular materials. Prog. Nucl. Magn. Reson. Spectrosc. 68, 1–40 (2013)

    CAS  Google Scholar 

  61. Gervais, C., Laurencin, D., Wong, A., Pourpoint, F., Labram, J., Woodward, B., Howes, A.P., Pike, K.J., Dupree, R., Mauri, F., Bonhomme, C., Smith, M.E.: New perspectives on calcium environments in inorganic materials containing calcium–oxygen bonds: a combined computational–experimental 43Ca NMR approach. Chem. Phys. Lett. 464, 42–48 (2008)

    CAS  Google Scholar 

  62. Gras, P., Baker, A., Combes, C., Rey, C., Sarda, S., Wright, A.J., Smith, M.E., Hanna, J.V., Gervais, C., Laurencin, D., Bonhomme, C.: From crystalline to amorphous calcium pyrophosphates: a solid state Nuclear Magnetic Resonance perspective. Acta Biomater. 31, 348–357 (2016)

    CAS  Google Scholar 

  63. Bonhomme, C., Wang, X., Hung, I., Gan, Z., Gervais, C., Sassoye, C., Rimsza, J., Du, J., Smith, M.E., Hanna, J.V., Sarda, S., Gras, P., Combes, C., Laurencin, D.: Pushing the limits of sensitivity and resolution for natural abundance 43 Ca NMR using ultra-high magnetic field (35.2 T). Chem. Commun. 54, 9591–9594 (2018)

    CAS  Google Scholar 

  64. Wagner, G.W., Itin, B.: Comment on “ 27Al, 47,49Ti, 31P, and 13C MAS NMR study of VX, GD, and HD reactions with Nanosize Al2O3, conventional Al2O3 and TiO2, and aluminum and titanium metal”. J. Phys. Chem. C. 112, 9962–9962 (2008)

    CAS  Google Scholar 

  65. Zhu, J., Trefiak, N., Woo, T.K., Huang, Y.: A 47/49Ti solid-state NMR study of layered titanium phosphates at ultrahigh magnetic field. J. Phys. Chem. C. 113, 10029–10037 (2009)

    CAS  Google Scholar 

  66. He, P., Lucier, B.E.G., Terskikh, V.V., Shi, Q., Dong, J., Chu, Y., Zheng, A., Sutrisno, A., Huang, Y.: Spies within metal-organic frameworks: investigating metal centers using solid-state NMR. J. Phys. Chem. C. 118, 23728–23744 (2014)

    CAS  Google Scholar 

  67. Lucier, B.E.G., Huang, Y.: Reviewing 47/49Ti Solid-State NMR Spectroscopy, pp. 1–78 (2016)

    Google Scholar 

  68. Huang, Y., Sutrisno, A.: Recent advances in solid-state 67Zn NMR studies: from nanoparticles to biological systems. In: Webb, G.A. (ed.) Annual Reports on NMR Spectroscopy, vol. 81, pp. 1–46. Elsevier Inc. Oxford, UK (2014)

    Google Scholar 

  69. Sutrisno, A., Terskikh, V.V., Shi, Q., Song, Z., Dong, J., Ding, S.Y., Wang, W., Provost, B.R., Daff, T.D., Woo, T.K., Huang, Y.: Characterization of Zn-containing metal-organic frameworks by solid-state 67Zn NMR spectroscopy and computational modeling. Chem. - A Eur. J. 18, 12251–12259 (2012)

    CAS  Google Scholar 

  70. Xu, J., Lucier, B.E.G., Sinelnikov, R., Terskikh, V.V., Staroverov, V.N., Huang, Y.: Monitoring and understanding the paraelectric-ferroelectric phase transition in the metal-organic framework [NH4][M(HCOO)3] by solid-state NMR spectroscopy. Chem. - A Eur. J. 21, 14348–14361 (2015)

    CAS  Google Scholar 

  71. Kobera, L., Southern, S.A., Rao, G.K., Richeson, D.S., Bryce, D.L.: New experimental insight into the nature of metal−metal bonds in digallium compounds: J coupling between quadrupolar nuclei. Chem. - A Eur. J. 22(28), 9565–9573 (2016)

    CAS  Google Scholar 

  72. Ma, Z.L., Wentz, K.M., Hammann, B.A., Chang, I.-Y., Kamunde-Devonish, M.K., Cheong, P.H.-Y., Johnson, D.W., Terskikh, V.V., Hayes, S.E.: Solid-state 69 Ga and 71 Ga NMR study of the nanoscale inorganic cluster [Ga 13 (μ 3 -OH) 6 (μ 2 -OH) 18 (H 2 O) 24 ](NO 3 ) 15. Chem. Mater. 26, 4978–4983 (2014)

    CAS  Google Scholar 

  73. Rettenwander, D., Langer, J., Schmidt, W., Arrer, C., Harris, K.J., Terskikh, V., Goward, G.R., Wilkening, M., Amthauer, G.: Site occupation of Ga and Al in stabilized cubic Li 7–3( x + y ) Ga x Al y La 3 Zr 2 O 12 garnets as deduced from 27 Al and 71 Ga MAS NMR at ultrahigh magnetic fields. Chem. Mater. 27, 3135–3142 (2015)

    CAS  Google Scholar 

  74. Playford, H.Y., Hannon, A.C., Tucker, M.G., Dawson, D.M., Ashbrook, S.E., Kastiban, R.J., Sloan, J., Walton, R.I.: Characterization of structural disorder in γ-Ga 2 O 3. J. Phys. Chem. C. 118, 16188–16198 (2014)

    CAS  Google Scholar 

  75. Michaelis, V.K., Aguiar, P.M., Terskikh, V.V., Kroeker, S.: Germanium-73 NMR of amorphous and crystalline GeO2. Chem. Commun. 4660–4662, 4660 (2009)

    Google Scholar 

  76. Michaelis, V.K., Kroeker, S.: 73Ge solid-state NMR of germanium oxide materials: experimental and theoretical studies. J. Phys. Chem. C. 114, 21736–21744 (2010)

    CAS  Google Scholar 

  77. Bowers, G.M., Kirkpatrick, R.J.: High-field 75As NMR study of arsenic oxysalts. J. Magn. Reson. 188, 311–321 (2007)

    CAS  Google Scholar 

  78. Faucher, A., Terskikh, V.V., Ye, E., Bernard, G.M., Wasylishen, R.E.: Solid-state 87Sr NMR spectroscopy at natural abundance and high magnetic field strength. J. Phys. Chem. A. 119, 11847–11861 (2015)

    CAS  Google Scholar 

  79. Bonhomme, C., Gervais, C., Folliet, N., Pourpoint, F., Coelho Diogo, C., Lao, J., Jallot, E., Lacroix, J., Nedelec, J.-M., Iuga, D., Hanna, J.V., Smith, M.E., Xiang, Y., Du, J., Laurencin, D.: 87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses. J. Am. Chem. Soc. 134, 12611–12628 (2012)

    CAS  Google Scholar 

  80. Lucier, B.E.G., Huang, Y.: Chapter Five: A review of 91Zr solid-state nuclear magnetic resonance spectroscopy. In: Annual Reports on NMR Spectroscopy, pp. 233–289 Elsevier Inc., Oxford, UK (2015)

    Google Scholar 

  81. Sutrisno, A., Liu, L., Dong, J., Huang, Y.: Solid-state 91Zr NMR characterization of layered and three-dimensional framework zirconium phosphates. J. Phys. Chem. C. 116, 17070–17081 (2012)

    CAS  Google Scholar 

  82. Romao, C.P., Perras, F.A., Werner-Zwanziger, U., Lussier, J.A., Miller, K.J., Calahoo, C.M., Zwanziger, J.W., Bieringer, M., Marinkovic, B.A., Bryce, D.L., White, M.A.: Zero thermal expansion in ZrMgMo3O12: NMR crystallography reveals origins of thermoelastic properties. Chem. Mater. 27, 2633–2646 (2015)

    CAS  Google Scholar 

  83. Lapina, O.B., Khabibulin, D.F., Shubin, A.A., Terskikh, V.V.: Practical aspects of 51V and 93Nb solid-state NMR spectroscopy and applications to oxide materials. Prog. Nucl. Magn. Reson. Spectrosc. 53, 128–191 (2008)

    CAS  Google Scholar 

  84. Papulovskiy, E., Shubin, A.A., Terskikh, V.V., Pickard, C.J., Lapina, O.B.: Theoretical and experimental insights into applicability of solid-state 93Nb NMR in catalysis. Phys. Chem. Chem. Phys. 15, 5115–5131 (2013)

    CAS  Google Scholar 

  85. Dunstan, M.T., Blanc, F., Avdeev, M., McIntyre, G.J., Grey, C.P., Ling, C.D.: Long-range-ordered coexistence of 4-, 5-, and 6-coordinate niobium in the mixed ionic-electronic conductor γ-Ba4Nb2O9. Chem. Mater. 25, 3154–3161 (2013)

    CAS  Google Scholar 

  86. Yamada, K., Shimizu, T., Nakai, T., Deguchi, K., Yue, B., Ye, J.: Solid-state 93Nb NMR study of nitrogen-doped lamellar niobic acid. Chem. Lett. 42, 1223–1224 (2013)

    CAS  Google Scholar 

  87. Greer, B.J., Kroeker, S.: Characterisation of heterogeneous molybdate and chromate phase assemblages in model nuclear waste glasses by multinuclear magnetic resonance spectroscopy. Phys. Chem. Chem. Phys. 14, 7375 (2012)

    CAS  Google Scholar 

  88. Santagneli, S.H., Ren, J., Rinke, M.T., Ribeiro, S.J.L., Messaddeq, Y., Eckert, H.: Structural studies of AgPO3–MoO3 glasses using solid state NMR and vibrational spectroscopies. J. Non-Cryst. Solids. 358, 985–992 (2012)

    CAS  Google Scholar 

  89. Hooper, T.J.N., Partridge, T.A., Rees, G.J., Keeble, D.S., Powell, N.A., Smith, M.E., Mikheenko, I.P., Macaskie, L.E., Bishop, P.T., Hanna, J.V.: Direct solid state NMR observation of the 105 Pd nucleus in inorganic compounds and palladium metal systems. Phys. Chem. Chem. Phys. 20, 26734–26743 (2018)

    CAS  Google Scholar 

  90. Hamaed, H., Johnston, K.E., Cooper, B.F.T., Terskikh, V.V., Ye, E., Macdonald, C.L.B., Arnold, D.C., Schurko, R.W.: A 115In solid-state NMR study of low oxidation-state indium complexes. Chem. Sci. 5, 982–995 (2014)

    CAS  Google Scholar 

  91. O’Dell, L.A., Moudrakovski, I.L.: A combined ultra-wideline solid-state NMR and DFT study of 137Ba electric field gradient tensors in barium compounds. Chem. Phys. Lett. 565, 56–60 (2013)

    Google Scholar 

  92. Sutrisno, A., Lu, C., Lipson, R.H., Huang, Y.: Combined 135/137 Ba solid-state NMR at an ultrahigh magnetic field and computational study of β-barium borate. J. Phys. Chem. C. 113, 21196–21201 (2009)

    CAS  Google Scholar 

  93. Willans, M.J., Feindel, K.W., Ooms, K.J., Wasylishen, R.E.: An investigation of lanthanum coordination compounds by using solid-State139La NMR spectroscopy and relativistic density functional theory. Chem. - A Eur. J. 12, 159–168 (2006)

    CAS  Google Scholar 

  94. Paterson, A.L., Hanson, M.A., Werner-Zwanziger, U., Zwanziger, J.W.: Relating 139La quadrupolar coupling constants to polyhedral distortion in crystalline structures. J. Phys. Chem. C. 119, 25508–25517 (2015)

    CAS  Google Scholar 

  95. Dithmer, L., Lipton, A.S., Reitzel, K., Warner, T.E., Lundberg, D., Nielsen, U.G.: Characterization of phosphate sequestration by a lanthanum modified bentonite clay: a solid-state NMR, EXAFS, and PXRD study. Environ. Sci. Technol. 49, 4559–4566 (2015)

    CAS  Google Scholar 

  96. Widdifield, C.M., Bain, A.D., Bryce, D.L.: Definitive solid-state 185/187Re NMR spectral evidence for and analysis of the origin of high-order quadrupole-induced effects for I = 5/2. Phys. Chem. Chem. Phys. 13, 12413–12420 (2011)

    CAS  Google Scholar 

  97. Schurko, R.W., Wi, S., Frydman, L.: Dynamic effects on the powder line shapes of half-integer quadrupolar nuclei: a solid-state NMR study of XO4- groups. J. Phys. Chem. A. 106, 51–62 (2002)

    CAS  Google Scholar 

  98. Hamaed, H., Laschuk, M.W., Terskikh, V.V., Schurko, R.W.: Application of solid-state 209Bi NMR to the structural characterization of bismuth-containing materials. J. Am. Chem. Soc. 131, 8271–8279 (2009)

    CAS  Google Scholar 

  99. Mastikhin, V.M., Mudrakovskii, I.L.: Magic angle1H NMR studies of propene adsorbed on γ-Al2O3. React. Kinet. Catal. Lett. 20, 351–355 (1982)

    CAS  Google Scholar 

  100. Mastikhin, V.M., Mudrakovsky, I.L., Nosov, A.V.: 1H N M R magic angle spinning (MAS) studies of heterogeneous catalysis. Prog. Nucl. Magn. Reson. Spectrosc. 23, 259–299 (1991)

    CAS  Google Scholar 

  101. Taoufik, M., Szeto, K.C., Merle, N., Del Rosal, I., Maron, L., Trébosc, J., Tricot, G., Gauvin, R.M., Delevoye, L.: Heteronuclear NMR spectroscopy as a surface-selective technique: a unique look at the hydroxyl groups of γ-alumina. Chemistry. 20, 4038–4046 (2014)

    CAS  Google Scholar 

  102. Li, W., Wang, Q., Xu, J., Aussenac, F., Qi, G., Zhao, X., Gao, P., Wang, C., Deng, F.: Probing the surface of γ-Al 2 O 3 by oxygen-17 dynamic nuclear polarization enhanced solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 20, 17218–17225 (2018)

    CAS  Google Scholar 

  103. Khabibulin, D.F., Papulovskiy, E., Andreev, A.S., Shubin, A.A., Volodin, A.M., Zenkovets, G.A., Yatsenko, D.A., Tsybulya, S.V., Lapina, O.B.: Surface hydroxyl OH defects of η-Al2O3 and χ-Al2O3 by solid state NMR, XRD, and DFT calculations. Zeitschrift Für Phys. Chemie. 231, 809 (2017)

    CAS  Google Scholar 

  104. Wang, M., Wu, X.-P., Zheng, S., Zhao, L., Li, L., Shen, L., Gao, Y., Xue, N., Guo, X., Huang, W., Gan, Z., Blanc, F., Yu, Z., Ke, X., Ding, W., Gong, X.-Q., Grey, C.P., Peng, L.: Identification of different oxygen species in oxide nanostructures with 17O solid-state NMR spectroscopy. Sci. Adv. 1, e1400133–e1400133 (2015)

    Google Scholar 

  105. Li, Y., Wu, X.-P., Jiang, N., Lin, M., Shen, L., Sun, H., Wang, Y., Wang, M., Ke, X., Yu, Z., Gao, F., Dong, L., Guo, X., Hou, W., Ding, W., Gong, X.-Q., Grey, C.P., Peng, L.: Distinguishing faceted oxide nanocrystals with 17O solid-state NMR spectroscopy. Nat. Commun. 8, 581 (2017)

    Google Scholar 

  106. Liu, L., Gu, X., Ji, Z., Zou, W., Tang, C., Gao, F., Dong, L.: Anion-assisted synthesis of TiO 2 nanocrystals with tunable crystal forms and crystal facets and their photocatalytic redox activities in organic reactions. J. Phys. Chem. C. 117, 18578–18587 (2013)

    CAS  Google Scholar 

  107. Keturakis, C.J., Lapina, O.B., Shubin, A.A., Terskikh, V.V., Papulovskiy, E., Yudaev, I.V., Paukshtis, E.A., Wachs, I.E.: Pyrolysis of the cellulose fraction of biomass in the presence of solid acid catalysts: an operando spectroscopy and theoretical investigation. ChemSusChem. 11, 4044–4059 (2018)

    CAS  Google Scholar 

  108. Vancompernolle, T., Trivelli, X., Delevoye, L., Pourpoint, F., Gauvin, R.M.: On the use of solid-state 45 Sc NMR for structural investigations of molecular and silica-supported scandium amide catalysts. Dalton Trans. 46, 13176–13179 (2017)

    CAS  Google Scholar 

  109. Shimizu, T., Nakai, T., Deguchi, K., Yamada, K., Yue, B., Ye, J.: A visible-light-responsive photocatalyst of nitrogen-doped solid-acid HNb3O8-N studied by ultrahigh-field 1H MAS NMR and 1H–93Nb/1H–15N HETCOR NMR in solids. Chem. Lett. 43, 80–82 (2014)

    CAS  Google Scholar 

  110. Papulovskiy, E., Khabibulin, D.F., Terskikh, V.V., Paukshtis, E.A., Bondareva, V.M., Shubin, A.A., Andreev, A.S., Lapina, O.: Effect of impregnation on the structure of niobium oxide/alumina catalysts studied by multinuclear solid-state NMR, FTIR, and quantum chemical calculations. J. Phys. Chem. C. 119, 10400–10411 (2015)

    CAS  Google Scholar 

  111. Deblonde, G.J.-P., Coelho-Diogo, C., Chagnes, A., Cote, G., Smith, M.E., Hanna, J.V., Iuga, D., Bonhomme, C.: Multinuclear solid-state NMR investigation of hexaniobate and hexatantalate compounds. Inorg. Chem. 55, 5946–5956 (2016)

    CAS  Google Scholar 

  112. Koito, Y., Rees, G.J., Hanna, J.V., Li, M.M.J., Peng, Y.K., Puchtler, T., Taylor, R., Wang, T., Kobayashi, H., Teixeira, I.F., Khan, M.A., Kreissl, H.T., Tsang, S.C.E.: Structure–activity correlations for Brønsted acid, Lewis acid, and photocatalyzed reactions of exfoliated crystalline niobium oxides. ChemCatChem. 9, 144–154 (2017)

    CAS  Google Scholar 

  113. Kreissl, H.T., Li, M.M.J., Peng, Y.-K., Nakagawa, K., Hooper, T.J.N., Hanna, J.V., Shepherd, A., Wu, T.-S., Soo, Y.-L., Tsang, S.C.E.: Structural studies of bulk to nanosize niobium oxides with correlation to their acidity. J. Am. Chem. Soc. 139, 12670–12680 (2017)

    CAS  Google Scholar 

  114. Merwin, L.H., Sebald, A.: Cross-polarisation to low-γ nuclei: the first 183W spectra. Solid State Nucl. Magn. Reson. 1, 45–47 (1992)

    CAS  Google Scholar 

  115. Venkatesh, A., Ryan, M.J., Biswas, A., Boteju, K.C., Sadow, A.D., Rossini, A.J.: Enhancing the sensitivity of solid-state NMR experiments with very low gyromagnetic ratio nuclei with fast magic angle spinning and proton detection. J. Phys. Chem. A. 122, 5635–5643 (2018)

    CAS  Google Scholar 

  116. Bouhoute, Y., Garron, A., Grekov, D., Merle, N., Szeto, K.C., De Mallmann, A., Del Rosal, I., Maron, L., Girard, G., Gauvin, R.M., Delevoye, L., Taoufik, M.: Well-defined supported mononuclear tungsten oxo species as olefin metathesis pre-catalysts. ACS Catal. 4, 4232–4241 (2014)

    CAS  Google Scholar 

  117. Merle, N., Trébosc, J., Baudouin, A., Del Rosal, I., Maron, L., Szeto, K., Genelot, M., Mortreux, A., Taoufik, M., Delevoye, L., Gauvin, R.M.: 17 O NMR gives unprecedented insights into the structure of supported catalysts and their interaction with the silica carrier. J. Am. Chem. Soc. 134, 9263–9275 (2012)

    CAS  Google Scholar 

  118. Grekov, D., Bouhoute, Y., Del Rosal, I., Maron, L., Taoufik, M., Gauvin, R.M., Delevoye, L.: 17 O MAS NMR studies of oxo-based olefin metathesis catalysts: a critical assessment of signal enhancement methods. Phys. Chem. Chem. Phys. 18, 28157–28163 (2016)

    CAS  Google Scholar 

  119. Bouhoute, Y., Grekov, D., Szeto, K.C., Merle, N., De Mallmann, A., Lefebvre, F., Raffa, G., Del Rosal, I., Maron, L., Gauvin, R.M., Delevoye, L., Taoufik, M.: Accessing realistic models for the WO 3 –SiO 2 industrial catalyst through the design of organometallic precursors. ACS Catal. 6, 1–18 (2016)

    CAS  Google Scholar 

  120. Xu, J., Wang, Q., Li, S., Deng, F.: Solid-State NMR in Zeolite Catalysis. Springer Singapore, Singapore (2019)

    Google Scholar 

  121. Dawson, D.M., Moran, R.F., Ashbrook, S.E.: An NMR crystallographic investigation of the relationships between the crystal structure and 29 Si isotropic chemical shift in silica zeolites. J. Phys. Chem. C. 121, 15198–15210 (2017)

    CAS  Google Scholar 

  122. Martineau, C., Vial, S., Barth, D., Quessette, F., Taulelle, F.: Can one and two-dimensional solid-state NMR fingerprint zeolite framework topology? Solid State Nucl. Magn. Reson. 65, 84–88 (2015)

    CAS  Google Scholar 

  123. Bull, L.M., Cheetham, A.K., Anupold, T., Reinhold, A., Samoson, A., Sauer, J., Bussemer, B., Lee, Y., Gann, S., Shore, J., Pines, A., Dupree, R.: A high-resolution 17 O NMR study of siliceous zeolite faujasite. J. Am. Chem. Soc. 120, 3510–3511 (1998)

    CAS  Google Scholar 

  124. Freude, D., Loeser, T., Michel, D., Pingel, U., Prochnow, D.: 17O NMR studies of low silicate zeolites. Solid State Nucl. Magn. Reson. 20, 46–60 (2001)

    CAS  Google Scholar 

  125. Loeser, T., Freude, D., Mabande, G.T., Schwieger, W.: 17O NMR studies of sodalites. Chem. Phys. Lett. 370, 32–38 (2003)

    CAS  Google Scholar 

  126. Readman, J.E., Grey, C.P., Ziliox, M., Bull, L.M., Samoson, A.: Comparison of the 17O NMR spectra of zeolites LTA and LSX. Solid State Nucl. Magn. Reson. 26, 153–159 (2004)

    CAS  Google Scholar 

  127. Zheng, A., Li, S., Liu, S.-B., Deng, F.: Acidic properties and structure–activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Acc. Chem. Res. 49, 655–663 (2016)

    CAS  Google Scholar 

  128. Li, S., Zheng, A., Su, Y., Zhang, H., Chen, L., Yang, J., Ye, C., Deng, F.: Brønsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J. Am. Chem. Soc. 129, 11161–11171 (2007)

    CAS  Google Scholar 

  129. Peng, L., Liu, Y., Kim, N., Readman, J.E., Grey, C.P.: Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques. Nat. Mater. 4, 216–219 (2005)

    CAS  Google Scholar 

  130. Peng, L., Huo, H., Liu, Y., Grey, C.P.: 17 O magic angle spinning NMR studies of Brønsted acid sites in zeolites HY and HZSM-5. J. Am. Chem. Soc. 129, 335–346 (2007)

    CAS  Google Scholar 

  131. Peng, L., Huo, H., Gan, Z., Grey, C.P.: 17O MQMAS NMR studies of zeolite HY. Microporous Mesoporous Mater. 109, 156–162 (2008)

    CAS  Google Scholar 

  132. Li, S., Pourpoint, F., Trébosc, J., Zhou, L., Lafon, O., Shen, M., Zheng, A., Wang, Q., Amoureux, J.-P., Deng, F.: Host–guest interactions in dealuminated HY zeolite probed by 13 C– 27 Al solid-state NMR spectroscopy. J. Phys. Chem. Lett. 5, 3068–3072 (2014)

    CAS  Google Scholar 

  133. Xin, S., Wang, Q., Xu, J., Chu, Y., Wang, P., Feng, N., Qi, G., Trébosc, J., Lafon, O., Fan, W., Deng, F.: The acidic nature of “NMR-invisible” tri-coordinated framework aluminum species in zeolites. Chem. Sci. 10, 10159–10169 (2019)

    CAS  Google Scholar 

  134. Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M.: The chemistry and applications of metal-organic frameworks. Science (80-). 341, 1230444–1230444 (2013)

    Google Scholar 

  135. Kang, Y.-S., Lu, Y., Chen, K., Zhao, Y., Wang, P., Sun, W.-Y.: Metal–organic frameworks with catalytic centers: from synthesis to catalytic application. Coord. Chem. Rev. 378, 262–280 (2019)

    CAS  Google Scholar 

  136. Deria, P., Mondloch, J.E., Karagiaridi, O., Bury, W., Hupp, J.T., Farha, O.K.: Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem. Soc. Rev. 43, 5896–5912 (2014)

    CAS  Google Scholar 

  137. Yang, X.-Y., Chen, L.-H., Li, Y., Rooke, J.C., Sanchez, C., Su, B.-L.: Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46, 481–558 (2017)

    CAS  Google Scholar 

  138. Shi, Y., Yang, A.-F., Cao, C.-S., Zhao, B.: Applications of MOFs: recent advances in photocatalytic hydrogen production from water. Coord. Chem. Rev. 390, 50–75 (2019)

    CAS  Google Scholar 

  139. Kousik, S., Velmathi, S.: Engineering metal–organic framework catalysts for C−C and C−X coupling reactions: advances in reticular approaches from 2014–2018. Chem. - A Eur. J., chem.201901987 (2019)

    Google Scholar 

  140. Liu, M., Wu, J., Hou, H.: Metal–organic framework (MOF)-based materials as heterogeneous catalysts for C−H bond activation. Chem. - A Eur. J., chem.201804149 (2018)

    Google Scholar 

  141. Wang, C., Liu, X., Keser Demir, N., Chen, J.P., Li, K.: Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016)

    CAS  Google Scholar 

  142. Cui, W.-G., Zhang, G.-Y., Hu, T.-L., Bu, X.-H.: Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coord. Chem. Rev. 387, 79–120 (2019)

    CAS  Google Scholar 

  143. Sutrisno, A., Huang, Y.: Solid-state NMR: a powerful tool for characterization of metal–organic frameworks. Solid State Nucl. Magn. Reson. 49–50, 1–11 (2013)

    Google Scholar 

  144. Jiang, J., Yaghi, O.M.: Brønsted acidity in metal–organic frameworks. Chem. Rev. 115, 6966–6997 (2015)

    CAS  Google Scholar 

  145. Lucier, B.E.G., Zhang, Y., Huang, Y.: Complete multinuclear solid-state NMR of metal-organic frameworks: the case of α-mg-formate. Concepts Magn. Reson. Part A. 45A, e21410 (2016)

    Google Scholar 

  146. Lucier, B.E.G., Chen, S., Huang, Y.: Characterization of metal–organic frameworks: unlocking the potential of solid-state NMR. Acc. Chem. Res. 51, 319–330 (2018)

    CAS  Google Scholar 

  147. Wong, Y.T.A., Martins, V., Lucier, B.E.G., Huang, Y.: Solid-state NMR spectroscopy: a powerful technique to directly study small gas molecules adsorbed in metal–organic frameworks. Chem. - A Eur. J. 25, 1848–1853 (2019)

    CAS  Google Scholar 

  148. Gonzalez-Nelson, A., Coudert, F.-X., van der Veen, M.: Rotational dynamics of linkers in metal–organic frameworks. Nano. 9, 330 (2019)

    CAS  Google Scholar 

  149. Mali, G.: Looking into metal-organic frameworks with solid-state NMR spectroscopy. In: Met. Fram. InTech London, UK (2016)

    Google Scholar 

  150. Chen, S., Lucier, B.E.G., Chen, M., Terskikh, V.V., Huang, Y.: Probing calcium-based metal-organic frameworks via natural abundance 43 Ca solid-state NMR spectroscopy. Chem. - A Eur. J. 24, 8732–8736 (2018)

    CAS  Google Scholar 

  151. Tang, J.A., Ellis, B.D., Warren, T.H., Hanna, J.V., Macdonald, C.L.B., Schurko, R.W.: Solid-state 63 Cu and 65 Cu NMR spectroscopy of inorganic and organometallic copper(I) complexes. J. Am. Chem. Soc. 129, 13049–13065 (2007)

    CAS  Google Scholar 

  152. Volkringer, C., Loiseau, T., Férey, G., Morais, C.M., Taulelle, F., Montouillout, V., Massiot, D.: Synthesis, crystal structure and 71Ga solid state NMR of a MOF-type gallium trimesate (MIL-96) with μ3-oxo bridged trinuclear units and a hexagonal 18-ring network. Microporous Mesoporous Mater. 105, 111–117 (2007)

    CAS  Google Scholar 

  153. Banerjee, D., Kim, S.J., Li, W., Wu, H., Li, J., Borkowski, L.A., Philips, B.L., Parise, J.B.: Synthesis and structural characterization of a 3-D lithium based metal−organic framework showing dynamic structural behavior. Cryst. Growth Des. 10, 2801–2805 (2010)

    CAS  Google Scholar 

  154. Chen, S., Lucier, B.E.G., Boyle, P.D., Huang, Y.: Understanding the fascinating origins of CO 2 adsorption and dynamics in MOFs. Chem. Mater. 28, 5829–5846 (2016)

    CAS  Google Scholar 

  155. Lieder, C., Opelt, S., Dyballa, M., Henning, H., Klemm, E., Hunger, M.: Adsorbate effect on AlO 4 (OH) 2 centers in the metal−organic framework MIL-53 investigated by solid-state NMR spectroscopy. J. Phys. Chem. C. 114, 16596–16602 (2010)

    CAS  Google Scholar 

  156. Jiang, Y., Huang, J., Marx, S., Kleist, W., Hunger, M., Baiker, A.: Effect of dehydration on the local structure of framework aluminum atoms in mixed linker MIL-53(Al) materials studied by solid-state NMR spectroscopy. J. Phys. Chem. Lett. 1, 2886–2890 (2010)

    CAS  Google Scholar 

  157. Loiseau, T., Lecroq, L., Volkringer, C., Marrot, J., Férey, G., Haouas, M., Taulelle, F., Bourrelly, S., Llewellyn, P.L., Latroche, M.: MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ 3 -Oxo-centered Trinuclear units. J. Am. Chem. Soc. 128, 10223–10230 (2006)

    CAS  Google Scholar 

  158. Chen, S., Mukherjee, S., Lucier, B.E.G., Guo, Y., Wong, Y.T.A., Terskikh, V.V., Zaworotko, M.J., Huang, Y.: Cleaving carboxyls: understanding thermally triggered hierarchical pores in the metal–organic framework MIL-121. J. Am. Chem. Soc. 141, 14257–14271 (2019)

    CAS  Google Scholar 

  159. Giovine, R., Volkringer, C., Ashbrook, S.E., Trébosc, J., McKay, D., Loiseau, T., Amoureux, J.-P., Lafon, O., Pourpoint, F.: Solid-state NMR spectroscopy proves the presence of penta-coordinated Sc sites in MIL-100(Sc). Chem. - A Eur. J. 23, 9525–9534 (2017)

    CAS  Google Scholar 

  160. Desveaux, B.E., Wong, Y.T.A., Lucier, B.E.G., Terskikh, V.V., Boyle, P.D., Jiang, S., Huang, Y.: CO 2 behavior in a highly selective ultramicroporous framework: insights from single-crystal X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy. J. Phys. Chem. C. 123, 17798–17807 (2019)

    CAS  Google Scholar 

  161. Zhang, Y., Lucier, B.E.G., Terskikh, V.V., Zheng, R., Huang, Y.: Tracking the evolution and differences between guest-induced phases of Ga-MIL-53 via ultra-wideline 69/71Ga solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 84, 118–131 (2017)

    Google Scholar 

  162. Zhang, Y., Lucier, B.E.G., McKenzie, S.M., Arhangelskis, M., Morris, A.J., Friščić, T., Reid, J.W., Terskikh, V.V., Chen, M., Huang, Y.: Welcoming gallium- and indium-fumarate MOFs to the family: synthesis, comprehensive characterization, observation of porous hydrophobicity, and CO 2 dynamics. ACS Appl. Mater. Interfaces. 10, 28582–28596 (2018)

    CAS  Google Scholar 

  163. Haquin, V., Etienne, M., Daiguebonne, C., Freslon, S., Calvez, G., Bernot, K., Le Pollès, L., Ashbrook, S.E., Mitchell, M.R., Bünzli, J.-C., Eliseeva, S.V., Guillou, O.: Color and brightness tuning in heteronuclear lanthanide terephthalate coordination polymers. Eur. J. Inorg. Chem. 2013, 3464–3476 (2013)

    CAS  Google Scholar 

  164. Devautour-Vinot, S., Maurin, G., Serre, C., Horcajada, P., Paula da Cunha, D., Guillerm, V., de Souza Costa, E., Taulelle, F., Martineau, C.: Structure and dynamics of the functionalized MOF type UiO-66(Zr): NMR and dielectric relaxation spectroscopies coupled with DFT calculations. Chem. Mater. 24, 2168–2177 (2012)

    CAS  Google Scholar 

  165. Xu, J., Terskikh, V.V., Chu, Y., Zheng, A., Huang, Y.: Mapping out chemically similar, crystallographically nonequivalent hydrogen sites in metal–organic frameworks by 1 H solid-state NMR spectroscopy. Chem. Mater. 27, 3306–3316 (2015)

    CAS  Google Scholar 

  166. Vukotic, V.N., Harris, K.J., Zhu, K., Schurko, R.W., Loeb, S.J.: Metal–organic frameworks with dynamic interlocked components. Nat. Chem. 4, 456–460 (2012)

    CAS  Google Scholar 

  167. Morris, W., Stevens, C.J., Taylor, R.E., Dybowski, C., Yaghi, O.M., Garcia-Garibay, M.A.: NMR and X-ray study revealing the rigidity of zeolitic imidazolate frameworks. J. Phys. Chem. C. 116, 13307–13312 (2012)

    CAS  Google Scholar 

  168. Morris, W., Taylor, R.E., Dybowski, C., Yaghi, O.M., Garcia-Garibay, M.A.: Framework mobility in the metal–organic framework crystal IRMOF-3: evidence for aromatic ring and amine rotation. J. Mol. Struct. 1004, 94–101 (2011)

    CAS  Google Scholar 

  169. Kolokolov, D.I., Stepanov, A.G., Guillerm, V., Serre, C., Frick, B., Jobic, H.: Probing the dynamics of the porous Zr terephthalate UiO-66 framework using 2 H NMR and neutron scattering. J. Phys. Chem. C. 116, 12131–12136 (2012)

    CAS  Google Scholar 

  170. Bitzer, J., Kleist, W.: Synthetic strategies and structural arrangements of isoreticular mixed-component metal–organic frameworks. Chem. - A Eur. J. 25, 1866–1882 (2019)

    CAS  Google Scholar 

  171. Deng, H., Doonan, C.J., Furukawa, H., Ferreira, R.B., Towne, J., Knobler, C.B., Wang, B., Yaghi, O.M.: Multiple functional groups of varying ratios in metal-organic frameworks. Science (80-). 327, 846–850 (2010)

    CAS  Google Scholar 

  172. Smolders, S., Willhammar, T., Krajnc, A., Sentosun, K., Wharmby, M.T., Lomachenko, K.A., Bals, S., Mali, G., Roeffaers, M.B.J., De Vos, D.E., Bueken, B.: A titanium(IV)-based metal-organic framework featuring defect-rich Ti-O sheets as an oxidative desulfurization catalyst. Angew. Chem. Int. Ed. 58, 9160–9165 (2019)

    CAS  Google Scholar 

  173. Kong, X., Deng, H., Yan, F., Kim, J., Swisher, J.A., Smit, B., Yaghi, O.M., Reimer, J.A.: Mapping of functional groups in metal-organic frameworks. Science (80-). 341, 882–885 (2013)

    CAS  Google Scholar 

  174. Krajnc, A., Kos, T., Zabukovec Logar, N., Mali, G.: A simple NMR-based method for studying the spatial distribution of linkers within mixed-linker metal-organic frameworks. Angew. Chem. Int. Ed. 54, 10535–10538 (2015)

    CAS  Google Scholar 

  175. Rossini, A.J., Zagdoun, A., Lelli, M., Canivet, J., Aguado, S., Ouari, O., Tordo, P., Rosay, M., Maas, W.E., Copéret, C., Farrusseng, D., Emsley, L., Lesage, A.: Dynamic nuclear polarization enhanced solid-state NMR spectroscopy of functionalized metal-organic frameworks. Angew. Chem. Int. Ed. 51, 123–127 (2012)

    CAS  Google Scholar 

  176. Wang, L.J., Deng, H., Furukawa, H., Gándara, F., Cordova, K.E., Peri, D., Yaghi, O.M.: Synthesis and characterization of metal–organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53, 5881–5883 (2014)

    CAS  Google Scholar 

  177. Kozachuk, O., Meilikhov, M., Yusenko, K., Schneemann, A., Jee, B., Kuttatheyil, A.V., Bertmer, M., Sternemann, C., Pöppl, A., Fischer, R.A.: A solid-solution approach to mixed-metal metal-organic frameworks - detailed characterization of local structures, defects and breathing behaviour of Al/V frameworks. Eur. J. Inorg. Chem. 2013, 4546–4557 (2013)

    CAS  Google Scholar 

  178. Kuttatheyil, A.V., Lässig, D., Lincke, J., Kobalz, M., Baias, M., König, K., Hofmann, J., Krautscheid, H., Pickard, C.J., Haase, J., Bertmer, M.: Synthesis, crystal structure, and solid-state NMR investigations of heteronuclear Zn/Co coordination networks — a comparative study. Inorg. Chem. 52, 4431–4442 (2013)

    CAS  Google Scholar 

  179. Bignami, G.P.M., Davis, Z.H., Dawson, D.M., Morris, S.A., Russell, S.E., McKay, D., Parke, R.E., Iuga, D., Morris, R.E., Ashbrook, S.E.: Cost-effective 17 O enrichment and NMR spectroscopy of mixed-metal terephthalate metal–organic frameworks. Chem. Sci. 9, 850–859 (2018)

    CAS  Google Scholar 

  180. Li, Z., Schweitzer, N.M., League, A.B., Bernales, V., Peters, A.W., “Bean” Getsoian, A., Wang, T.C., Miller, J.T., Vjunov, A., Fulton, J.L., Lercher, J.A., Cramer, C.J., Gagliardi, L., Hupp, J.T., Farha, O.K.: Sintering-resistant single-site nickel catalyst supported by metal–organic framework. J. Am. Chem. Soc. 138, 1977–1982 (2016)

    CAS  Google Scholar 

  181. Chen, S., Lucier, B.E.G., Luo, W., Xie, X., Feng, K., Chan, H., Terskikh, V.V., Sun, X., Sham, T.-K., Workentin, M.S., Huang, Y.: Loading across the periodic table: introducing 14 different metal ions to enhance metal–organic framework performance. ACS Appl. Mater. Interfaces. 10, 30296–30305 (2018)

    CAS  Google Scholar 

  182. Lucier, B.E.G., Zhang, Y., Lee, K.J., Lu, Y., Huang, Y.: Grasping hydrogen adsorption and dynamics in metal–organic frameworks using 2 H solid-state NMR. Chem. Commun. 52, 7541–7544 (2016)

    CAS  Google Scholar 

  183. Zhang, Y., Lucier, B.E.G., Fischer, M., Gan, Z., Boyle, P.D., Desveaux, B., Huang, Y.: A multifaceted study of methane adsorption in metal-organic frameworks by using three complementary techniques. Chem. - A Eur. J. 24, 7866–7881 (2018)

    CAS  Google Scholar 

  184. Khudozhitkov, A.E., Toktarev, A.V., Arzumanov, S.S., Gabrienko, A.A., Kolokolov, D.I., Stepanov, A.G.: 2 H solid-state NMR spectroscopy reveals the dynamics of a pyridine probe interacting with coordinatively unsaturated metal sites of MIL-100(Al) metal–organic frameworks. Chem. - A Eur. J. 25, 10808–10812 (2019)

    CAS  Google Scholar 

  185. Kolokolov, D.I., Jobic, H., Stepanov, A.G., Guillerm, V., Devic, T., Serre, C., Férey, G.: Dynamics of benzene rings in MIL-53(Cr) and MIL-47(V) frameworks studied by 2H NMR spectroscopy. Angew. Chem. Int. Ed. 49, 4791–4794 (2010)

    CAS  Google Scholar 

  186. Lin, L.-C., Kim, J., Kong, X., Scott, E., McDonald, T.M., Long, J.R., Reimer, J.A., Smit, B.: Understanding CO 2 dynamics in metal-organic frameworks with open metal sites. Angew. Chemie. 125, 4506–4509 (2013)

    Google Scholar 

  187. Witherspoon, V.J., Xu, J., Reimer, J.A.: Solid-state NMR investigations of carbon dioxide gas in metal–organic frameworks: insights into molecular motion and adsorptive behavior. Chem. Rev. 118, 10033–10048 (2018)

    CAS  Google Scholar 

  188. Wong, Y.T.A., Babcock, T.K., Chen, S., Lucier, B.E.G., Huang, Y.: CO guest interactions in SDB-based metal–organic frameworks: a solid-state nuclear magnetic resonance investigation. Langmuir. 34, 15640–15649 (2018)

    CAS  Google Scholar 

  189. Ba, Y., Ripmeester, J.A., Ratcliffe, C.I.: Water molecular reorientation in ice and tetrahydrofuran clathrate hydrate from lineshape analysis of 17 O spin-echo NMR spectra. Can. J. Chem. 89, 1055–1064 (2011)

    CAS  Google Scholar 

  190. Jiang, J., Gándara, F., Zhang, Y.-B., Na, K., Yaghi, O.M., Klemperer, W.G.: Superacidity in sulfated metal–organic framework-808. J. Am. Chem. Soc. 136, 12844–12847 (2014)

    CAS  Google Scholar 

  191. Kolbe, F., Krause, S., Bon, V., Senkovska, I., Kaskel, S., Brunner, E.: High-pressure in situ 129 Xe NMR spectroscopy: insights into switching mechanisms of flexible metal–organic frameworks isoreticular to DUT-49. Chem. Mater. 31, 6193–6201 (2019)

    CAS  Google Scholar 

  192. Springuel-Huet, M.-A., Nossov, A., Adem, Z., Guenneau, F., Volkringer, C., Loiseau, T., Férey, G., Gédéon, A.: 129 Xe NMR study of the framework flexibility of the porous hybrid MIL-53(Al). J. Am. Chem. Soc. 132, 11599–11607 (2010)

    CAS  Google Scholar 

  193. Giovine, R., Volkringer, C., Springuel-Huet, M.-A., Nossov, A., Blanc, F., Trébosc, J., Loiseau, T., Amoureux, J.-P., Lafon, O., Pourpoint, F.: Study of xenon mobility in the two forms of MIL-53(Al) using solid-state NMR spectroscopy. J. Phys. Chem. C. 121, 19262–19268 (2017)

    CAS  Google Scholar 

  194. Böhlmann, W., Pöppl, A., Sabo, M., Kaskel, S.: Characterization of the metal−organic framework compound Cu 3 (benzene 1,3,5-tricarboxylate) 2 by means of 129 Xe nuclear magnetic and electron paramagnetic resonance spectroscopy. J. Phys. Chem. B. 110, 20177–20181 (2006)

    Google Scholar 

  195. Ueda, T., Kurokawa, K., Eguchi, T., Kachi-Terajima, C., Takamizawa, S.: Local structure and xenon adsorption behavior of metal−organic framework system [M 2 (O 2 CPh) 4 (pyz)] n (M = Rh and Cu) as studied with use of single-crystal X-ray diffraction, adsorption isotherm, and Xenon-129 NMR. J. Phys. Chem. C. 111, 1524–1534 (2007)

    CAS  Google Scholar 

  196. Ooms, K.J., Campbell, K., Tykwinski, R.R., Wasylishen, R.E.: Hyperpolarized 129Xe NMR spectroscopic investigation of potentially porous shape-persistent macrocyclic materials. J. Mater. Chem. 15, 4318 (2005)

    CAS  Google Scholar 

  197. Pawsey, S., Moudrakovski, I., Ripmeester, J., Wang, L.-Q., Exarhos, G.J., Rowsell, J.L.C., Yaghi, O.M.: Hyperpolarized 129 Xe nuclear magnetic resonance studies of isoreticular metal-organic frameworks. J. Phys. Chem. C. 111, 6060–6067 (2007)

    CAS  Google Scholar 

  198. Weiland, E., Springuel-Huet, M.-A., Nossov, A., Gédéon, A.: 129Xenon NMR: review of recent insights into porous materials. Microporous Mesoporous Mater. 225, 41–65 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Lapina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lapina, O., Yakovlev, I. (2023). Nuclear Magnetic Resonance (NMR): Modern Methods. In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_35

Download citation

Publish with us

Policies and ethics