Skip to main content

Neutron Scattering (NS) Spectroscopy

  • Chapter
  • First Online:
Springer Handbook of Advanced Catalyst Characterization

Part of the book series: Springer Handbooks ((SHB))

  • 2560 Accesses

Abstract

A wide range of advanced experimental methods has been used in catalysis science to understand chemical transformations at molecular level. Among these, neutron scattering not only gives catalytic information that is highly complementary to other microscopic scattering techniques such as electrons (microscopy and diffraction) and photons from visible light to synchrotron X-rays but also often provides unique insights into catalysis. This chapter aims to provide a general overview of neutron scattering and its applications for heterogeneous catalysis, emphasizing chemistry at the gas/solid interface. It starts with an introduction to the theory of neutron scattering, with pros and cons for catalyst research, followed by a description of three main neutron scattering techniques: neutron diffraction (ND), inelastic neutron spectroscopy (INS), and quasi-elastic neutron scattering (QENS). It includes recent applications in each technique and then a short introduction of other neutron techniques that are less frequently used in the catalysis field. It ends with a summary and a future outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schimmel, H.G., Johnson, M.R., Kearley, G.J., Ramirez-Cuesta, A.J., Huot, J., Mulder, F.M.: The vibrational spectrum of magnesium hydride from inelastic neutron scattering and density functional theory. Mater. Sci. Eng. B. 108, 38–41 (2004)

    Google Scholar 

  2. Bridges, C.A., Fernandez-Alonso, F., Goff, J.P., Rosseinsky, M.J.: Observation of hydride mobility in the transition-metal oxide hydride Lasrcoo3h0.7. Adv. Mater. 18, 3304–3308 (2006)

    CAS  Google Scholar 

  3. Polo-Garzon, F., Luo, S., Cheng, Y., Page, K.L., Ramirez-Cuesta, A.J., Britt, P.F., Wu, Z.: Neutron scattering investigations of hydride species in heterogeneous catalysis. ChemSusChem. 12, 93–103 (2019)

    CAS  Google Scholar 

  4. Fu, Q.J., Ramirez-Cuesta, A.J., Tsang, S.C.: Molecular aluminum hydrides identified by inelastic neutron scattering during H2 regeneration of catalyst-doped Naalh4. J. Phys. Chem. B. 110, 711–715 (2006)

    CAS  Google Scholar 

  5. Tang, Y., Kobayashi, Y., Tassel, C., Yamamoto, T., Kageyama, H.: Hydride-enhanced Co2 methanation: water-stable Batio2.4h0.6 as a new support. Adv. Energy Mater. 8, 1800800 (2018)

    Google Scholar 

  6. Sato, T., Ramirez-Cuesta, A.J., Daemen, L.L., Cheng, Y., Orimo, S.-i.: Evidence of intermediate hydrogen states in the formation of a complex hydride. Inorg. Chem. 57, 867–872 (2018)

    CAS  Google Scholar 

  7. Noritake, T., Aoki, M., Towata, S., Ninomiya, A., Nakamori, Y., Orimo, S.: Crystal structure analysis of novel complex hydrides formed by the combination of Libh4 and Linh2. Appl. Phys. A. 83, 277–279 (2006)

    CAS  Google Scholar 

  8. Masakuni, O., Chun-Keung, L.: Neutron studies of nanostructured Cuo□Al2o3 Nox removal catalysts. Phys. B Condens. Matter. 241-243, 269–275 (1997)

    Google Scholar 

  9. Huq, A., Chen, W.-R.: Neutron scattering for in-situ characterization of heterogeneous catalysis. In: In-Situ Characterization of Heterogeneous Catalysts, pp. 169–189 (2013). https://doi.org/10.1002/9781118355923.ch6

    Chapter  Google Scholar 

  10. Omojola, T., Silverwood, I.P., O’Malley, A.J.: Molecular behaviour of methanol and dimethyl ether in H-Zsm-5 catalysts as a function of Si/Al ratio: a Quasielastic neutron scattering study. Catal. Sci. Technol. 10, 4305 (2020). https://doi.org/10.1039/D0CY00670J

    Article  CAS  Google Scholar 

  11. Wu, Z., Cheng, Y., Tao, F., Daemen, L., Foo, G.S., Nguyen, L., Zhang, X., Beste, A., Ramirez-Cuesta, A.J.: Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst. J. Am. Chem. Soc. 139, 9721–9727 (2017)

    CAS  Google Scholar 

  12. Davidson, A.L., Webb, P.B., Silverwood, I.P., Lennon, D.: The application of quasi-elastic neutron scattering to investigate hydrogen diffusion in an iron-based Fischer–Tropsch synthesis catalyst. Top. Catal. 63, 378 (2020). https://doi.org/10.1007/s11244-020-01259-2

    Article  CAS  Google Scholar 

  13. Warringham, R., McFarlane, A.R., MacLaren, D.A., Webb, P.B., Tooze, R.P., Taylor, J., Ewings, R.A., Parker, S.F., Lennon, D.: The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of Co. J. Chem. Phys. 143, 174703 (2015)

    Google Scholar 

  14. Terreni, J., Sambalova, O., Borgschulte, A., Rudić, S., Parker, S.F., Ramirez-Cuesta, A.J.: Volatile hydrogen intermediates of Co2 methanation by inelastic neutron scattering. Catalysts. 10 (2020)

    Google Scholar 

  15. Mitchell, P.C.H.: Tomkinson, J., Parker, S.F., Ramirez-Cuesta, A.J.: Vibrational Spectroscopy with Neutrons: With Applications in Chemistry, Biology, Materials Science and Catalysis, vol. 3. World Scientific, Singapore (2005)

    Google Scholar 

  16. Parker, S.F., Lennon, D., Albers, P.W.: Vibrational spectroscopy with neutrons: a review of new directions. Appl. Spectrosc. 65, 1325–1341 (2011)

    CAS  Google Scholar 

  17. Mitchell, P.C.H., Ramirez-Cuesta, A.J., Parker, S.F., Tomkinson, J., Thompsett, D.: Hydrogen spillover on carbon-supported metal catalysts studied by inelastic neutron scattering. Surface vibrational states and hydrogen riding modes. J. Phys. Chem. B. 107, 6838–6845 (2003)

    CAS  Google Scholar 

  18. Jobic, H., Renouprez, A., Bee, M., Poinsignon, C.: Quasi-elastic neutron scattering study of the molecular motions of methanol adsorbed on H-Zsm-5. J. Phys. Chem. 90, 1059–1065 (1986)

    CAS  Google Scholar 

  19. Jobic, H., Bee, M., Renouprez, A.: Quasi-elastic neutron scattering of benzene in Na-Mordenite. Surf. Sci. 140, 307–320 (1984)

    CAS  Google Scholar 

  20. Silverwood, I.P., Sakai, V.G.: Propane diffusion in Zsm-5 pores measured by quasielastic neutron scattering under macroscopic flow. Chem. Eng. Sci. 186, 116–121 (2018)

    CAS  Google Scholar 

  21. Eklöf-Österberg, C., Nedumkandathil, R., Häussermann, U., Jaworski, A., Pell, A.J., Tyagi, M., Jalarvo, N.H., Frick, B., Faraone, A., Karlsson, M.: Dynamics of hydride ions in metal hydride-reduced Batio3 samples investigated with quasielastic neutron scattering. J. Phys. Chem. C. 123, 2019–2030 (2019)

    Google Scholar 

  22. Turner, J.F.C., Benmore, C.J., Barker, C.M., Kaltsoyannis, N., Thomas, J.M., David, W.I.F., Catlow, C.R.A.: Probing the nature of acetylene bound to the active site of a Nina−zeolite Y catalyst by in situ neutron scattering. J. Phys. Chem. B. 104, 7570–7573 (2000)

    CAS  Google Scholar 

  23. Thomas, J.M.: High-resolution electron microscopy, neutron diffraction with isotopic substitution and X-ray absorption fine structure for the characterisation of active sites in oxide catalysts. In: Gamba, A., Colella, C., Coluccia, S. (eds.) Studies in Surface Science and Catalysis, 140, pp. 1–12. Elsevier, Amsterdam (2001)

    Google Scholar 

  24. Kammert, J., Moon, J., Cheng, Y., Daemen, L., Irle, S., Fung, V., Liu, J., Page, K., Ma, X., Phaneuf, V., Tong, J., Ramirez-Cuesta, A.J., Wu, Z.: Nature of reactive hydrogen for ammonia synthesis over a Ru/C12a7 electride catalyst. J. Am. Chem. Soc. 142, 7655–7667 (2020)

    CAS  Google Scholar 

  25. Stockmeyer, R., Conrad, H.M., Renouprez, A., Fouilloux, P.: Study of hydrogen chemisorbed on Raney-nickel by neutron inelastic spectroscopy. Surf. Sci. 49, 549–566 (1975)

    CAS  Google Scholar 

  26. Wright, P.A., Thomas, J.M., Cheetham, A.K., Nowak, A.K.: Localizing active sites in zeolitic catalysts: neutron powder profile analysis and computer simulation of deuteropyridine bound to gallozeolite-L. Nature. 318, 611–614 (1985)

    Google Scholar 

  27. Goyal, R., Fitch, A.N., Jobic, H.: Powder neutron and X-ray diffraction studies of benzene adsorbed in zeolite Zsm-5. J. Phys. Chem. B. 104, 2878–2884 (2000)

    CAS  Google Scholar 

  28. Falkowska, M., Chansai, S., Manyar, H.G., Gladden, L.F., Bowron, D.T., Youngs, T.G.A., Hardacre, C.: Determination of toluene hydrogenation kinetics with neutron diffraction. Phys. Chem. Chem. Phys. 18, 17237–17243 (2016)

    CAS  Google Scholar 

  29. Neumann, D.A.: Neutron scattering and hydrogenous materials. Mater. Today. 9, 34–41 (2006)

    CAS  Google Scholar 

  30. Parker, S.F., Lennon, D.: Applications of neutron scattering to heterogeneous catalysis. J. Phys. Conf. Ser. 746, 012066 (2016)

    Google Scholar 

  31. Lennon, D., Parker, S.F.: Inelastic neutron scattering studies of methyl chloride synthesis over alumina. Acc. Chem. Res. 47, 1220–1227 (2014)

    CAS  Google Scholar 

  32. Ramirez-Cuesta, A.J., Jones, M.O., David, W.I.F.: Neutron scattering and hydrogen storage. Mater. Today. 12, 54–61 (2009)

    CAS  Google Scholar 

  33. O’Malley, A.J., Parker, S.F., Catlow, C.R.A.: Neutron spectroscopy as a tool in catalytic science. Chem. Commun. 53, 12164–12176 (2017)

    Google Scholar 

  34. Xue, Z.-L., Ramirez-Cuesta, A.J., Brown, C.M., Calder, S., Cao, H., Chakoumakos, B.C., Daemen, L.L., Huq, A., Kolesnikov, A.I., Mamontov, E., Podlesnyak, A.A., Wang, X.: Neutron instruments for research in coordination chemistry. Eur. J. Inorg. Chem. 2019, 1065–1089 (2019)

    CAS  Google Scholar 

  35. Albers, P.W., Parker, S.F.: Inelastic incoherent neutron scattering in catalysis research. In: Gates, B.C., Knözinger, H. (eds.) Advances in Catalysis, vol. 51, pp. 99–132. Academic Press, Amsterdam (2007)

    Google Scholar 

  36. Albers, P.W., Lennon, D., Parker, S.F.: Chapter 5: catalysis. In: Fernandez-Alonso, F., Price, D.L. (eds.) Experimental Methods in the Physical Sciences, vol. 49, pp. 279–348. Academic Press, Cambridge (2017)

    Google Scholar 

  37. Mittal, R., Chaplot, S.L., Choudhury, N.: Inelastic neutron scattering, lattice dynamics, computer simulation and thermodynamic properties. In: Thermodynamic Properties of Solids, pp. 75–121 (2010). https://doi.org/10.1002/9783527630417.ch3

    Chapter  Google Scholar 

  38. Ramirez-Cuesta, A.J., Mitchell, P.C.H.: Neutrons and neutron spectroscopy. In: Local Structural Characterisation, pp. 173–224. Wiley, Chichester (2013). https://doi.org/10.1002/9781118681909.ch3

  39. Squires, G.L.: Introduction to the Theory of Thermal Neutron Scattering. Courier Corporation (1996)

    Google Scholar 

  40. Andersen, K.H., Argyriou, D.N., Jackson, A.J., Houston, J., Henry, P.F., Deen, P.P., Toft-Petersen, R., Beran, P., Strobl, M., Arnold, T., Wacklin-Knecht, H., Tsapatsaris, N., Oksanen, E., Woracek, R., Schweika, W., Mannix, D., Hiess, A., Kennedy, S., Kirstein, O., Petersson Årsköld, S., Taylor, J., Hagen, M.E., Laszlo, G., Kanaki, K., Piscitelli, F., Khaplanov, A., Stefanescu, I., Kittelmann, T., Pfeiffer, D., Hall-Wilton, R., Lopez, C.I., Aprigliano, G., Whitelegg, L., Moreira, F.Y., Olsson, M., Bordallo, H.N., Martín-Rodríguez, D., Schneider, H., Sharp, M., Hartl, M., Nagy, G., Ansell, S., Pullen, S., Vickery, A., Fedrigo, A., Mezei, F., Arai, M., Heenan, R.K., Halcrow, W., Turner, D., Raspino, D., Orszulik, A., Cooper, J., Webb, N., Galsworthy, P., Nightingale, J., Langridge, S., Elmer, J., Frielinghaus, H., Hanslik, R., Gussen, A., Jaksch, S., Engels, R., Kozielewski, T., Butterweck, S., Feygenson, M., Harbott, P., Poqué, A., Schwaab, A., Lieutenant, K., Violini, N., Voigt, J., Brückel, T., Koenen, M., Kämmerling, H., Babcock, E., Salhi, Z., Wischnewski, A., Heynen, A., Désert, S., Jestin, J., Porcher, F., Fabrèges, X., Fabrèges, G., Annighöfer, B., Klimko, S., Dupont, T., Robillard, T., Goukassov, A., Longeville, S., Alba-Simionesco, C., Bourges, P., Le Bouffy, J.G., Lavie, P., Rodrigues, S., Calzada, E., Lerche, M., Schillinger, B., Schmakat, P., Schulz, M., Seifert, M., Lohstroh, W., Petry, W., Neuhaus, J., Loaiza, L., Tartaglione, A., Glavic, A., Schütz, S., Stahn, J., Lehmann, E., Morgano, M., Schefer, J., Filges, U., Klauser, C., Niedermayer, C., Fenske, J., Nowak, G., Rouijaa, M., Siemers, D.J., Kiehn, R., Müller, M., Carlsen, H., Udby, L., Lefmann, K., Birk, J.O., Holm-Dahlin, S., Bertelsen, M., Hansen, U.B., Olsen, M.A., Christensen, M., Iversen, K., Christensen, N.B., Rønnow, H.M., Freeman, P.G., Hauback, B.C., Kolevatov, R., Llamas-Jansa, I., Orecchini, A., Sacchetti, F., Petrillo, C., Paciaroni, A., Tozzi, P., Zanatta, M., Luna, P., Herranz, I., del Moral, O.G., Huerta, M., Magán, M., Mosconi, M., Abad, E., Aguilar, J., Stepanyan, S., Bakedano, G., Vivanco, R., Bustinduy, I., Sordo, F., Martínez, J.L., Lechner, R.E., Villacorta, F.J., Šaroun, J., Lukáš, P., Markó, M., Zanetti, M., Bellissima, S., del Rosso, L., Masi, F., Bovo, C., Chowdhury, M., De Bonis, A., Di Fresco, L., Scatigno, C., Parker, S.F., Fernandez-Alonso, F., Colognesi, D., Senesi, R., Andreani, C., Gorini, G., Scionti, G., Schreyer, A.: The instrument suite of the European spallation source. Nucl. Instrum. Methods Phys. Res., Sect. A. 957, 163402 (2020)

    CAS  Google Scholar 

  41. The Advanced Photon Source - a National Synchrotron Radiation Research Facility at Argonne National Laboratory, Technical Bulletins Series Tb-25. (1997)

    Google Scholar 

  42. Mason, T.E.: Pulsed neutron scattering for the 21st century. Phys. Today. 59, 44–49 (2006)

    CAS  Google Scholar 

  43. Sears, V.F.: Neutron scattering lengths and cross sections. Neutron News. 3, 26–37 (1992)

    Google Scholar 

  44. Neutron Scattering Lengths and Cross Sections. https://www.ncnr.nist.gov/resources/n-lengths/

  45. Colognesi, D., Celli, M., Cilloco, F., Newport, R.J., Parker, S.F., Rossi-Albertini, V., Sacchetti, F., Tomkinson, J., Zoppi, M.: Tosca neutron spectrometer: the final configuration. Appl. Phys. A. 74, s64–s66 (2002)

    CAS  Google Scholar 

  46. Feigin, L., Svergun, D.I.: Structure Analysis by Small-Angle X-Ray and Neutron Scattering, vol. 1. Plenum Press, New York (1987)

    Google Scholar 

  47. Zhou, X.-L., Chen, S.-H.: Theoretical foundation of X-ray and neutron reflectometry. Phys. Rep. 257, 223–348 (1995)

    CAS  Google Scholar 

  48. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Google Scholar 

  49. Hedin, L., Lundqvist, B.I.: Explicit local exchange-correlation potentials. J. Phys. C Solid State Phys. 4, 2064 (1971)

    Google Scholar 

  50. Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., Shin, Y.K., Junkermeier, C., Engel-Herbert, R., Janik, M.J., Aktulga, H.M.: The Reaxff reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 1–14 (2016)

    Google Scholar 

  51. McGreevy, R.L., Pusztai, L.: Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol. Simul. 1, 359–367 (1988)

    Google Scholar 

  52. Cheng, Y.Q., Daemen, L.L., Kolesnikov, A.I., Ramirez-Cuesta, A.J.: Simulation of inelastic neutron scattering spectra using Oclimax. J. Chem. Theory Comput. 15, 1974–1982 (2019)

    CAS  Google Scholar 

  53. Ramirez-Cuesta, A.J.: aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra. Comput. Phys. Commun. 157(3), 226–238 (2004)

    CAS  Google Scholar 

  54. Dymkowski, K., et al.: AbINS: The modern software for INS interpretation. Phys. B Condens. Matter. 551, 443–448 (2018)

    CAS  Google Scholar 

  55. Ramirez-Cuesta, A.J., Mitchell, P.C.H.: Hydrogen adsorption in a copper Zsm5 zeolite: an inelastic neutron scattering study. Catal. Today. 120, 368–373 (2007)

    CAS  Google Scholar 

  56. Mojet, B.L., Eckert, J., van Santen, R.A., Albinati, A., Lechner, R.E.: Evidence for chemisorbed molecular hydrogen in Fe-Zsm5 from inelastic neutron scattering. J. Am. Chem. Soc. 123, 8147–8148 (2001)

    CAS  Google Scholar 

  57. Juárez, R., Parker, S.F., Concepción, P., Corma, A., García, H.: Heterolytic and heterotopic dissociation of hydrogen on ceria-supported gold nanoparticles. Combined inelastic neutron scattering and Ft-Ir spectroscopic study on the nature and reactivity of surface hydrogen species. Chem. Sci. 1, 731–738 (2010)

    Google Scholar 

  58. Jobic, H., Clugnet, G., Lacroix, M., Yuan, S., Mirodatos, C., Breysse, M.: Identification of new hydrogen species adsorbed on ruthenium sulfide by neutron spectroscopy. J. Am. Chem. Soc. 115, 3654–3657 (1993)

    CAS  Google Scholar 

  59. Lacroix, M., Jobic, H., Dumonteil, C., Afanasiev, P., Breysse, M., Kasztelan, S.: Role of adsorbed hydrogen species on ruthenium and molybdenum sulfides. Characterization by inelastic neutron scattering, thermoanalysis methods and model reactions. In: Hightower, J.W., Nicholas Delgass, W., Iglesia, E., Bell, A.T. (eds.) Studies in Surface Science and Catalysis, vol. 101, pp. 117–126. Elsevier, Amsterdam (1996)

    Google Scholar 

  60. Cavallari, C., Pontiroli, D., Jiménez-Ruiz, M., Ivanov, A., Mazzani, M., Gaboardi, M., Aramini, M., Brunelli, M., Riccò, M., Rols, S.: Hydrogen on graphene investigated by inelastic neutron scattering. J. Phys. Conf. Ser. 554, 012009 (2014)

    Google Scholar 

  61. Tsao, C.-S., Liu, Y., Chuang, H.-Y., Tseng, H.-H., Chen, T.-Y., Chen, C.-H., Yu, M.-S., Li, Q., Lueking, A., Chen, S.-H.: Hydrogen spillover effect of Pt-doped activated carbon studied by inelastic neutron scattering. J Phys. Chem. Lett. 2, 2322–2325 (2011)

    CAS  Google Scholar 

  62. Itoh, K., Miyahara, Y., Orimo, S.-i., Fujii, H., Kamiyama, T., Fukunaga, T.: The local structure of hydrogen storage nanocrystalline graphite by neutron scattering. J. Alloys Compd. 356–357, 608–611 (2003)

    Google Scholar 

  63. Colognesi, D., Ulivi, L., Zoppi, M., Ramirez-Cuesta, A.J., Orecchini, A., Karkamkar, A.J., Fichtner, M., Gil Bardají, E., Zhao-Karger, Z.: Hydrogen-storage materials dispersed into nanoporous substrates studied through incoherent inelastic neutron scattering. J. Alloys Compd. 538, 91–99 (2012)

    CAS  Google Scholar 

  64. Rowsell, J.L.C., Eckert, J., Yaghi, O.M.: Characterization of H2 binding sites in prototypical metal−organic frameworks by inelastic neutron scattering. J. Am. Chem. Soc. 127, 14904–14910 (2005)

    CAS  Google Scholar 

  65. Moon, J., Cheng, Y., Daemen, L.L., Li, M., Polo-Garzon, F., Ramirez-Cuesta, A.J., Wu, Z.: Discriminating the role of surface hydride and hydroxyl for acetylene semihydrogenation over ceria through in situ neutron and infrared spectroscopy. ACS Catal. 10, 5278–5287 (2020)

    CAS  Google Scholar 

  66. Hochard, F., Jobic, H., Massardier, J., Renouprez, A.J.: Gas phase hydrogenation of acetonitrile on Raney nickel catalysts: reactive hydrogen. J. Mol. Catal. A Chem. 95, 165–172 (1995)

    CAS  Google Scholar 

  67. Hawkins, A.P., Zachariou, A., Parker, S.F., Collier, P., Barrow, N., Silverwood, I.P., Howe, R.F., Lennon, D.: Effect of steam de-alumination on the interactions of propene with H-Zsm-5 zeolites. RSC Adv. 10, 23136–23147 (2020)

    CAS  Google Scholar 

  68. Warringham, R., Davidson, A.L., Webb, P.B., Tooze, R.P., Ewings, R.A., Parker, S.F., Lennon, D.: Examining the temporal behavior of the hydrocarbonaceous overlayer on an iron based Fischer–Tropsch catalyst. RSC Adv. 9, 2608–2617 (2019)

    CAS  Google Scholar 

  69. Hawkins, A.P., Zachariou, A., Collier, P., Ewings, R.A., Howe, R.F., Parker, S.F., Lennon, D.: Low-temperature studies of propene oligomerization in Zsm-5 by inelastic neutron scattering spectroscopy. RSC Adv. 9, 18785–18790 (2019)

    CAS  Google Scholar 

  70. Hall, P.G., Pidduck, A., Wright, C.J.: Inelastic neutron scattering by water adsorbed on silica. J. Colloid Interface Sci. 79, 339–349 (1981)

    CAS  Google Scholar 

  71. Beta, I.A., Böhlig, H., Hunger, B.: Structure of adsorption complexes of water in zeolites of different types studied by infrared spectroscopy and inelastic neutron scattering. Phys. Chem. Chem. Phys. 6, 1975–1981 (2004)

    CAS  Google Scholar 

  72. Jobic, H., Tuel, A., Krossner, M., Sauer, J.: Water in interaction with acid sites in H-Zsm-5 zeolite does not form hydroxonium ions. A comparison between neutron scattering results and ab Initio calculations. J. Phys. Chem. 100, 19545–19550 (1996)

    CAS  Google Scholar 

  73. Copéret, C., Estes, D.P., Larmier, K., Searles, K.: Isolated surface hydrides: formation, structure, and reactivity. Chem. Rev. 116, 8463–8505 (2016)

    Google Scholar 

  74. Norton, J.R., Sowa, J.R.: Introduction: metal hydrides. Chem. Rev. 116, 8315–8317 (2016)

    Google Scholar 

  75. Nicol, J.M., Rush, J.J., Kelley, R.D.: Inelastic neutron scattering studies of the interaction of hydrogen with palladium black. Surf. Sci. 197, 67–80 (1988)

    CAS  Google Scholar 

  76. Albers, P.W., Krauter, J.G.E., Ross, D.K., Heidenreich, R.G., Köhler, K., Parker, S.F.: Identification of surface states on finely divided supported palladium catalysts by means of inelastic incoherent neutron scattering. Langmuir. 20, 8254–8260 (2004)

    CAS  Google Scholar 

  77. Albers, P., Burmeister, R., Seibold, K., Prescher, G., Parker, S.F., Ross, D.K.: Investigations of palladium catalysts on different carbon supports. J. Catal. 181, 145–154 (1999)

    CAS  Google Scholar 

  78. Parker, S.F., Walker, H.C., Callear, S.K., Grünewald, E., Petzold, T., Wolf, D., Möbus, K., Adam, J., Wieland, S.D., Jiménez-Ruiz, M., Albers, P.W.: The effect of particle size, morphology and support on the formation of palladium hydride in commercial catalysts. Chem. Sci. 10, 480–489 (2019)

    CAS  Google Scholar 

  79. Parker, S.F., Adroja, D., Jiménez-Ruiz, M., Tischer, M., Möbus, K., Wieland, S.D., Albers, P.: Characterisation of the surface of freshly prepared precious metal catalysts. Phys. Chem. Chem. Phys. 18, 17196–17201 (2016)

    CAS  Google Scholar 

  80. Albers, P., Auer, E., Ruth, K., Parker, S.F.: Inelastic neutron scattering investigation of the nature of surface sites occupied by hydrogen on highly dispersed platinum on commercial carbon black supports. J. Catal. 196, 174–179 (2000)

    CAS  Google Scholar 

  81. Albers, P.W., Lopez, M., Sextl, G., Jeske, G., Parker, S.F.: Inelastic neutron scattering investigation on the site occupation of atomic hydrogen on platinum particles of different size. J. Catal. 223, 44–53 (2004)

    CAS  Google Scholar 

  82. Rush, J.J., Cavanagh, R.R., Kelley, R.D.: Summary abstract: neutron scattering from adsorbates on platinum black. J. Vac. Sci. Technol. A. 1, 1245–1246 (1983)

    Google Scholar 

  83. Wright, C.J.: Alternative explanation of the inelastic neutron scattering from hydrogen adsorbed by Raney nickel. J. Chem. Soc., Faraday Trans. 2. 73, 1497–1500 (1977)

    CAS  Google Scholar 

  84. Jobic, H., Candy, J.-P., Perrichon, V., Renouprez, A.: Neutron-scattering and volumetric study of hydrogen adsorbed and absorbed on Raney palladium. J. Chem. Soc., Faraday Trans. 1. 81, 1955–1961 (1985)

    CAS  Google Scholar 

  85. Barrera, G.D., Colognesi, D., Mitchell, P.C.H., Ramirez-Cuesta, A.J.: Lda or Gga? A combined experimental inelastic neutron scattering and ab initio lattice dynamics study of alkali metal hydrides. Chem. Phys. 317, 119–129 (2005)

    CAS  Google Scholar 

  86. Sivadinarayana, C., Choudhary, T.V., Daemen, L.L., Eckert, J., Goodman, D.W.: The nature of the surface species formed on Au/Tio2 during the reaction of H2 and O2: an inelastic neutron scattering study. J. Am. Chem. Soc. 126, 38–39 (2004)

    CAS  Google Scholar 

  87. Breck, D.W.: Zeolite molecular sieves: structure, chemistry, and use D. W. Breck (Union Carbide Corporation, Tarrytown, New York) John Wiley and Sons, New York, London, Sydney, and Toronto. 1974. 771. J. Chromatogr. Sci. 13, 18A (1975)

    Google Scholar 

  88. Weitkamp, J., Fritz, M., Ernst, S.: Zeolites as media for hydrogen storage. Int. J. Hydrog. Energy. 20, 967–970 (1995)

    CAS  Google Scholar 

  89. Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley, New Jersey (2003)

    Google Scholar 

  90. Ramirez-Cuesta, A.J., Mitchell, P.C.H., Ross, D.K., Georgiev, P.A., Anderson, P.A., Langmi, H.W., Book, D.: Dihydrogen in cation-substituted zeolites X—an inelastic neutron scattering study. J. Mater. Chem. 17, 2533–2539 (2007)

    CAS  Google Scholar 

  91. Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M., Yaghi, O.M.J.S.: Hydrogen storage in microporous metal-organic frameworks. Science. 300, 1127–1129 (2003)

    CAS  Google Scholar 

  92. Rowsell, J.L.C., Millward, A.R., Park, K.S., Yaghi, O.M.: Hydrogen sorption in functionalized metal−organic frameworks. J. Am. Chem. Soc. 126, 5666–5667 (2004)

    CAS  Google Scholar 

  93. Kroto, H.W., Fischer, J.E., Cox, D.: The Fullerenes. Newnes, Oxford (2012)

    Google Scholar 

  94. Schimmel, H.G., Kearley, G.J., Nijkamp, M.G., Visser, C.T., de Jong, K.P., Mulder, F.M.: Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals. Chem. Eur. J. 9, 4764–4770 (2003)

    CAS  Google Scholar 

  95. Georgiev, P.A., Ross, D.K., Monte, A.D., Montaretto-Marullo, U., Edwards, R.A.H., Ramirez-Cuesta, A.J., Colognesi, D.: Hydrogen site occupancies in single-walled carbon nanotubes studied by inelastic neutron scattering. J. Phys. Condens. Matter. 16, L73–L78 (2004)

    CAS  Google Scholar 

  96. Horsewill, A.J., Panesar, K.S., Rols, S., Johnson, M.R., Murata, Y., Komatsu, K., Mamone, S., Danquigny, A., Cuda, F., Maltsev, S., Grossel, M.C., Carravetta, M., Levitt, M.H.: Quantum translator-rotator: inelastic neutron scattering of dihydrogen molecules trapped inside anisotropic fullerene cages. Phys. Rev. Lett. 102, 013001 (2009)

    CAS  Google Scholar 

  97. Horsewill, A.J., Panesar, K.S., Rols, S., Ollivier, J., Johnson, M.R., Carravetta, M., Mamone, S., Levitt, M.H., Murata, Y., Komatsu, K., Chen, J.Y.C., Johnson, J.A., Lei, X., Turro, N.J.: Inelastic neutron scattering investigations of the quantum molecular dynamics of a H${}_{2}$ molecule entrapped inside a fullerene cage. Phys. Rev. B. 85, 205440 (2012)

    Google Scholar 

  98. Mao, W.L., Mao, H.-k., Goncharov, A.F., Struzhkin, V.V., Guo, Q., Hu, J., Shu, J., Hemley, R.J., Somayazulu, M., Zhao, Y.: Hydrogen clusters in clathrate hydrate. Science. 297, 2247 (2002)

    CAS  Google Scholar 

  99. Lee, H., Lee, J.-w., Kim, D.Y., Park, J., Seo, Y.-T., Zeng, H., Moudrakovski, I.L., Ratcliffe, C.I., Ripmeester, J.A.: Tuning clathrate hydrates for hydrogen storage. Nature. 434, 743–746 (2005)

    CAS  Google Scholar 

  100. Bée, M.: Localized and Long-range diffusion in condensed matter: state of the art of Qens studies and future prospects. Chem. Phys. 292, 121–141 (2003)

    Google Scholar 

  101. Mamontov, E., Herwig, K.W.: A time-of-flight backscattering spectrometer at the spallation neutron source, BASIS. Rev. Sci. Instrum. 82, 085109 (2011)

    CAS  Google Scholar 

  102. Shibata, K., Takahashi, N., Kawakita, Y., Matsuura, M., Yamada, T., Tominaga, T., Kambara, W., Kobayashi, M., Inamura, Y., Nakatani, T., Nakajima, K., Arai, M.: The performance of Tof near backscattering spectrometer DNA in Mlf, J-Parc. In: Proceedings of the 2nd International Symposium on Science at J-Parc? Unlocking the Mysteries of Life, Matter and the Universe ? Jps Conference Proceedings vol 8, vol. 8. Journal of the Physical Society of Japan (2015)

    Google Scholar 

  103. Bernhard, F., Eugene, M., van Lambert, E., Tilo, S.: Recent backscattering instrument developments at the Ill and Sns. Z. Phys. Chem. 224, 33–60 (2010)

    Google Scholar 

  104. Tsapatsaris, N., Lechner, R.E., Markó, M., Bordallo, H.N.: Conceptual design of the time-of-flight backscattering spectrometer, miracles, at the European spallation source. Rev. Sci. Instrum. 87, 085118 (2016)

    CAS  Google Scholar 

  105. Azuah, R.T., Kneller, L.R., Qiu, Y., Tregenna-Piggott, P.L., Brown, C.M., Copley, J.R., Dimeo, R.M.: Dave: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Natl. Inst. Stand. Technol. 114, 341–358 (2009)

    CAS  Google Scholar 

  106. Mamontov, E., Smith, R.W., Billings, J.J., Ramirez-Cuesta, A.J.: Simple analytical model for fitting Qens data from liquids. Phys. B Condens. Matter. 566, 50–54 (2019)

    CAS  Google Scholar 

  107. Gautam, S., Le, T.T.B., Rother, G., Jalarvo, N., Liu, T., Mamontov, E., Dai, S., Qiao, Z.-A., Striolo, A., Cole, D.: Effects of water on the stochastic motions of propane confined in Mcm-41-S pores. Phys. Chem. Chem. Phys. 21, 25035–25046 (2019)

    CAS  Google Scholar 

  108. Ruthven, D.M., Eic, M., Richard, E.: Diffusion of C8 aromatic hydrocarbons in silicalite. Zeolites. 11, 647–653 (1991)

    CAS  Google Scholar 

  109. Teixeira, A.R., Chang, C.-C., Coogan, T., Kendall, R., Fan, W., Dauenhauer, P.J.: Dominance of surface barriers in molecular transport through silicalite-1. J. Phys. Chem. C. 117, 25545–25555 (2013)

    CAS  Google Scholar 

  110. Song, L., Sun, Z.-L., Rees, L.V.C.: Experimental and molecular simulation studies of adsorption and diffusion of cyclic hydrocarbons in silicalite-1. Microporous Mesoporous Mater. 55, 31–49 (2002)

    CAS  Google Scholar 

  111. Fried, J.R., Weaver, S.: Atomistic simulation of hydrocarbon diffusion in silicalite. Comput. Mater. Sci. 11, 277–293 (1998)

    CAS  Google Scholar 

  112. Koriabkina, A.O., de Jong, A.M., Schuring, D., van Grondelle, J., van Santen, R.A.: Influence of the acid sites on the intracrystalline diffusion of hexanes and their mixtures within Mfi-zeolites. J. Phys. Chem. B. 106, 9559–9566 (2002)

    CAS  Google Scholar 

  113. Krishna, R., van Baten, J.M.: Diffusion of hydrocarbon mixtures in Mfi zeolite: influence of intersection blocking. Chem. Eng. J. 140, 614–620 (2008)

    CAS  Google Scholar 

  114. Leroy, F., Rousseau, B., Fuchs, A.H.: Self-diffusion of N-alkanes in silicalite using molecular dynamics simulation: a comparison between rigid and flexible frameworks. Phys. Chem. Chem. Phys. 6, 775–783 (2004)

    CAS  Google Scholar 

  115. Jiang, M., Eic, M., Miachon, S., Dalmon, J.-A., Kocirik, M.: Diffusion of N-butane, isobutane and ethane in a Mfi-zeolite membrane investigated by gas permeation and Zlc measurements. Sep. Purif. Technol. 25, 287–295 (2001)

    CAS  Google Scholar 

  116. Matam, S.K., O’Malley, A.J., Catlow, C.R.A., Suwardiyanto, Collier, P., Hawkins, A.P., Zachariou, A., Lennon, D., Silverwood, I., Parker, S.F., Howe, R.F.: The effects of Mtg catalysis on methanol mobility in Zsm-5. Cat. Sci. Technol. 8, 3304–3312 (2018)

    CAS  Google Scholar 

  117. Tang, Y., Kobayashi, Y., Masuda, N., Uchida, Y., Okamoto, H., Kageyama, T., Hosokawa, S., Loyer, F., Mitsuhara, K., Yamanaka, K., Tamenori, Y., Tassel, C., Yamamoto, T., Tanaka, T., Kageyama, H.: Metal-dependent support effects of oxyhydride-supported Ru, Fe, Co catalysts for ammonia synthesis. Adv. Energy Mater. 8, 1801772 (2018)

    Google Scholar 

  118. Shull, C.G., Wollan, E.O.: X-ray, electron, and neutron diffraction. Science. 108, 69 (1948)

    CAS  Google Scholar 

  119. Shoemaker, D.P., Li, J., Seshadri, R.: Unraveling atomic positions in an oxide spinel with two Jahn−Teller ions: local structure investigation of Cumn2o4. J. Am. Chem. Soc. 131, 11450–11457 (2009)

    CAS  Google Scholar 

  120. Page, K., Stoltzfus, M.W., Kim, Y.-I., Proffen, T., Woodward, P.M., Cheetham, A.K., Seshadri, R.: Local atomic ordering in Batao2n studied by neutron pair distribution function analysis and density functional theory. Chem. Mater. 19, 4037–4042 (2007)

    CAS  Google Scholar 

  121. Page, K., Hood, T.C., Proffen, T., Neder, R.B.: Building and refining complete nanoparticle structures with total scattering data. J. Appl. Crystallogr. 44, 327–336 (2011)

    CAS  Google Scholar 

  122. Liu, J., Olds, D., Peng, R., Yu, L., Foo, G.S., Qian, S., Keum, J., Guiton, B.S., Wu, Z., Page, K.: Quantitative analysis of the morphology of {101} and {001} faceted anatase Tio2 nanocrystals and its implication on photocatalytic activity. Chem. Mater. 29, 5591–5604 (2017)

    CAS  Google Scholar 

  123. Mawdsley, J.R., Vaughey, J.T., Krause, T.R.: Neutron diffraction studies of nickel-containing perovskite oxide catalysts exposed to autothermal reforming environments. Chem. Mater. 21, 4830–4838 (2009)

    CAS  Google Scholar 

  124. Rauch, H., Waschkowski, W., Neutron scattering lengths. In: Dianoux, A.-J., Lander, G. (eds.) Neutron Data Booklet, 2nd ed, pp. 11–15. Institut Laue-Langevin, Grenoble (2003)

    Google Scholar 

  125. Kandemir, T., Girgsdies, F., Hansen, T.C., Liss, K.-D., Kasatkin, I., Kunkes, E.L., Wowsnick, G., Jacobsen, N., Schlögl, R., Behrens, M.: In situ study of catalytic processes: neutron diffraction of a methanol synthesis catalyst at industrially relevant pressure. Angew. Chem. Int. Ed. 52, 5166–5170 (2013)

    CAS  Google Scholar 

  126. Otomo, T., Ikeda, K., Honda, T.: Structural studies of hydrogen storage materials with neutron diffraction: a review. J. Phys. Soc. Jpn. 89, 051001 (2020)

    Google Scholar 

  127. Orimo, S.-i., Nakamori, Y., Eliseo, J.R., Züttel, A., Jensen, C.M.: Complex hydrides for hydrogen storage. Chem. Rev. 107, 4111–4132 (2007)

    CAS  Google Scholar 

  128. Chater, P.A., David, W.I., Johnson, S.R., Edwards, P.P., Anderson, P.A.: Synthesis and crystal structure of Li 4 Bh 4 (Nh 2). Chem. Commun. 3, 2439–2441 (2006)

    Google Scholar 

  129. Weidenthaler, C.: Crystal structure evolution of complex metal aluminum hydrides upon hydrogen release. J. Energy Chem. 42, 133–143 (2020)

    Google Scholar 

  130. Brinks, H., Langley, W., Jensen, C., Graetz, J., Reilly, J., Hauback, B.: Synthesis and crystal structure of Β-Ald3. J. Alloys Compd. 433(433), 180–183 (2007)

    CAS  Google Scholar 

  131. Brinks, H.W., Istad-Lem, A., Hauback, B.C.: Mechanochemical synthesis and crystal structure of Α ‘-Ald3 and Α-Ald3. J. Phys. Chem. B. 110(110), 25833–25837 (2006)

    CAS  Google Scholar 

  132. Orimo, S., Majer, G., Fukunaga, T., Züttel, A., Schlapbach, L., Fujii, H.: Hydrogen in the mechanically prepared nanostructured graphite. Appl. Phys. Lett. 75, 3093–3095 (1999)

    CAS  Google Scholar 

  133. Yildirim, T., Hartman, M.R.: Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks. Phys. Rev. Lett. 95, 215504 (2005)

    CAS  Google Scholar 

  134. Lee, H., Choi, Y.N., Choi, S.B., Kim, J., Kim, D., Jung, D.H., Park, Y.S., Yoon, K.B.: Liquid-like hydrogen stored in nanoporous materials at 50 K observed by in situ neutron diffraction experiments. J. Phys. Chem. C. 117, 3177–3184 (2013)

    CAS  Google Scholar 

  135. Zhao, Y., Xu, H., Daemen, L.L., Lokshin, K., Tait, K.T., Mao, W.L., Luo, J., Currier, R.P., Hickmott, D.D.: High-pressure/low-temperature neutron scattering of gas inclusion compounds: Progress and prospects. Proc. Natl. Acad. Sci. 104, 5727 (2007)

    CAS  Google Scholar 

  136. Dincǎ, M., Dailly, A., Liu, Y., Brown, C.M., Neumann, D.A., Long, J.R.: Hydrogen storage in a microporous metal−organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 128, 16876–16883 (2006)

    Google Scholar 

  137. Parvanov, V.M., Schenter, G.K., Hess, N.J., Daemen, L.L., Hartl, M., Stowe, A.C., Camaioni, D.M., Autrey, T.: Materials for hydrogen storage: structure and dynamics of borane ammonia complex. Dalton Trans., 4514 (2008). https://doi.org/10.1039/B718138H4514-4522

  138. Kandemir, T., Schuster, M.E., Senyshyn, A., Behrens, M., Schlögl, R.: The Haber–Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. Int. Ed. 52, 12723–12726 (2013)

    CAS  Google Scholar 

  139. Youngs, T.G.A., Manyar, H., Bowron, D.T., Gladden, L.F., Hardacre, C.: Probing chemistry and kinetics of reactions in heterogeneous catalysts. Chem. Sci. 4, 3484–3489 (2013)

    CAS  Google Scholar 

  140. Holderer, O., Carmo, M., Shviro, M., Lehnert, W., Noda, Y., Koizumi, S., Appavou, M.-S., Appel, M., Frielinghaus, H.: Fuel cell electrode characterization using neutron scattering. Materials (Basel). 13, 1474 (2020)

    CAS  Google Scholar 

  141. Borgschulte, A., Delmelle, R., Duarte, R.B., Heel, A., Boillat, P., Lehmann, E.: Water distribution in a sorption enhanced methanation reactor by time resolved neutron imaging. Phys. Chem. Chem. Phys. 18, 17217–17223 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anibal J. Ramirez-Cuesta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moon, J., Cheng, Y., Wu, Z., Ramirez-Cuesta, A.J. (2023). Neutron Scattering (NS) Spectroscopy. In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_24

Download citation

Publish with us

Policies and ethics