Skip to main content

The Basics of Functional Magnetic Resonance Imaging

  • Chapter
  • First Online:
EEG - fMRI

Abstract

This chapter consists of four parts. In the first part, the basics of magnetic resonance imaging (MRI) are described, including the MR effect, the use of magnetic field gradients for spatial encoding and the relaxation times T1, T2 and T2*. After introducing k-space, the echo planar imaging (EPI) sequence, which is frequently used in functional studies, is described. Subsequently, the difference between T2*-weighted gradient echo and T2-weighted spin echo sequences is explained. The last section of this part introduces the specific absorption rate (SAR) which corresponds to the energy absorbed by tissue during an MR experiment. The second and third parts are dedicated to the cerebral blood flow (CBF) and cerebral blood volume (CBV), respectively. In each case, the respective parameter is introduced quantitatively, including typical values in brain tissue, and the most important measurement techniques are described. The last part introduces the blood oxygenation level-dependent (BOLD) effect, which is the basis of most functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625

    Article  CAS  Google Scholar 

  • Baumgartner R, Cho W, Coimbra A, Chen C, Wang Z, Struyk A, Venketasubramanian N, Low M, Gargano C, Zhao F, Williams D, Reese T, Seah S, Feng D, Apreleva S, Petersen E, Evelhoch JL (2016) Evaluation of an fMRI USPIO-based assay in healthy human volunteers. J Magn Reson Imaging 46:124–133

    Article  Google Scholar 

  • Belliveau JW, Kennedy DN Jr, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    Article  CAS  Google Scholar 

  • Biagi L, Abbruzzese A, Bianchi MC, Alsop DC, Del Guerra A, Tosetti M (2007) Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 25:696–702

    Article  Google Scholar 

  • Bloch F, Hansen WW, Packard M (1946) Nuclear induction. Phys Rev 69:127

    Article  Google Scholar 

  • Buxton RB (2001) The elusive initial dip. Neuroimage 13:953–958

    Article  CAS  Google Scholar 

  • Buxton RB (2002) Introduction to functional magnetic resonance imaging: principles and techniques. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Buxton RB (2012) Dynamic models of BOLD contrast. Neuroimage 62:953–961

    Article  Google Scholar 

  • Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855–864

    Article  CAS  Google Scholar 

  • Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233

    Article  Google Scholar 

  • Carmichael DW, Hamandi K, Laufs H, Duncan JS, Thomas DL, Lemieux L (2008) An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity. Magn Reson Imaging 26(7):870–873

    Article  Google Scholar 

  • Cergignani M, Dowell NG, Tofts P (eds) (2018) Quantitative MRI of the brain: principles of physical measurement. CRC Press, Boca Raton

    Google Scholar 

  • Chen JJ, Pike GB (2009) Origins of the BOLD post-stimulus undershoot. Neuroimage 46:559–568

    Article  Google Scholar 

  • Cheng K (2018) Exploration of human visual cortex using high spatial resolution functional magnetic resonance imaging. Neuroimaging 164:4–9

    Article  Google Scholar 

  • Christen T, Ni W, Qiu D, Schmiedeskamp H, Bammer R, Moseley M, Zaharchuk G (2012) High-resolution cerebral blood volume imaging in humans using the blood pool contrast agent ferumoxytol. Magn Reson Med 70:705–710

    Article  Google Scholar 

  • Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497

    Article  Google Scholar 

  • Dean BL, Lee C, Kirsch JE, Runge VM, Dempsey RM, Pettigrew LC (1992) Cerebral hemodynamics and cerebral blood volume: MR assessment using gadolinium contrast agents and Tl-weighted turbo-FLASH imaging. Am J Neurorad 13:39–48

    CAS  Google Scholar 

  • Donahue MJ, Lu H, Jones CK, Edden RA, Pekar JJ, van Zijl PC (2006) Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med 56:1261–1273

    Article  Google Scholar 

  • Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ (2016) Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 323:96–109

    Article  CAS  Google Scholar 

  • Goense J, Bohraus Y, Logothetis NK (2016) fMRI at high spatial resolution: implications for BOLD-models. Front Comput Neurosci 10:66. https://doi.org/10.3389/fncom.2016.00066

    Article  Google Scholar 

  • Grade M, Hernandez Tamames JA, Pizzini FB, Achten E, Golay X, Smits M (2015) A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice. Neuroradiology 57:1181–1202

    Article  CAS  Google Scholar 

  • Haase A (1990) Snapshot FLASH MRI: applications to T1, T2, and chemical-shift imaging. Magn Reson Med 13:77–89

    Article  CAS  Google Scholar 

  • Hahn EL (1950) Spin echoes. Phys Rev 80:580–594

    Article  Google Scholar 

  • Haller S, Zaharchuk G, Thomas DL, Lovblad K-O, Barkhof F, Golay X (2016) Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology 281:337–356

    Article  Google Scholar 

  • Hamandi K, Laufs H, Nöth U, Carmichael DW, Duncan JS, Lemieux L (2008) BOLD and perfusion changes during epileptic generalised spike wave activity. Neuroimage 39:608–618

    Article  Google Scholar 

  • Hartkamp NS, Petersen ET, De Vis JB, Bokkers RPH, Hendrikse J (2013) Mapping of cerebral perfusion territories using territorial arterial spin labeling: techniques and clinical application. NMR Biomed 26:901–912

    Article  Google Scholar 

  • Havlicek M, Roebroeck A, Friston KJ, Gardumi A, Ivanov D, Uludag K (2015) Physiologically informed dynamic causal modeling of fMRI data. Neuroimage 122:355–372

    Article  Google Scholar 

  • Havlicek M, Ivanov D, Roebroeck A, Uludag K (2017) Determining excitatory and inhibitory neuronal activity from multimodal fMRI data using a generative hemodynamic model. Front Neurosci 11:616. https://doi.org/10.3389/fnins.2017.00616

    Article  Google Scholar 

  • Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833

    Article  CAS  Google Scholar 

  • Huber L, Handwerker DA, Jangraw DC, Chen G, Hall A, StĂ¼ber C, Gonzalez-Castillo J, Ivanov D, Marrett S, Guidi M, Goense J, Poser BA, Bandettini PA (2017) High-resolution CBV-fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1. Neuron 96:1253–1263.e7

    Article  CAS  Google Scholar 

  • Kader A, Young WL (1996) The effects of intracranial arteriovenous malformations on cerebral hemodynamics. Neurosurg Clin N Am 7:767–781

    Article  CAS  Google Scholar 

  • Kida I, Rothman DL, Hyder F (2007) Dynamics of changes in blood flow, volume, and oxygenation: implications for dynamic functional magnetic resonance imaging calibration. J Cereb Blood Flow Metab 27:690–696

    Article  Google Scholar 

  • Kim SG, Harel N, Jin T, Kim T, Lee P, Zhao F (2013) Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed 26:949–962

    Article  CAS  Google Scholar 

  • Kuppusamy K, Lin W, Cizek GR, Haacke EM (1996) In vivo regional cerebral blood volume: quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology 201:106–112

    Article  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679

    Article  CAS  Google Scholar 

  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. Neuroimage 19:1463–1476

    Article  CAS  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    Article  CAS  Google Scholar 

  • Le Heron CJ, Wright SL, Melzer TR, Myall DJ, MacAskill MR, Livingston L, Keenan RJ, Watts R, Dalrymple-Alford JC, Anderson TJ (2014) Comparing cerebral perfusion in Alzheimer’s disease and Parkinson’s disease dementia: an ASL-MRI study. J Cereb Blood Flow Metab 34:964–970

    Article  Google Scholar 

  • Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise RJ, Hatazawa J, Herold S, Beany RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113(1):27–47

    Article  Google Scholar 

  • Lin W, Celik A, Paczynski RP (1999) Regional cerebral blood volume: a comparison of the dynamic imaging and the steady state methods. J Magn Reson Imaging 9(1):44–52

    Article  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  Google Scholar 

  • Lu H, Golay X, Pekar JJ, van Zijl PC (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50:263–274

    Article  Google Scholar 

  • Lu H, van Zijl PC, Hendrikse J, Golay X (2004) Multiple acquisitions with global inversion cycling (MAGIC): a multislice technique for vascular-space-occupancy dependent fMRI. Magn Reson Med 51:9–15

    Article  Google Scholar 

  • Lu H, Law M, Johnson G, Ge Y, van Zijl PC, Helpern JA (2005) Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med 54:1403–1411

    Article  Google Scholar 

  • Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254

    Article  CAS  Google Scholar 

  • Luh WM, Wong EC, Bandettini PA, Ward BD, Hyde JS (2000) Comparison of simultaneously measured perfusion and BOLD signal increases during brain activation with T1-based tissue identification. Magn Reson Med 44:137–143

    Article  CAS  Google Scholar 

  • Mandeville JB (2012) IRON fMRI measurements of CBV and implications for BOLD signal. Neuroimage 62(2):1000–1008

    Article  Google Scholar 

  • Mansfield P (1977) Multiplanar image formation using NMR spin echoes. J Phys C Solid State Phys 10:L55–L58

    Article  CAS  Google Scholar 

  • Markuerkiaga I, Barth M, Norris DG (2016) A cortical vascular model for examining the specificity of the laminar BOLD signal. Neuroimage 132:491–498

    Article  Google Scholar 

  • Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20:145–158

    Article  Google Scholar 

  • Moseley ME, Chew WM, White DL, Kucharczyk J, Litt L, Derugin N, Dupon J, Brasch RC, Norman D (1992) Hypercarbia-induced changes in cerebral blood volume in the cat: a 1H MRI and intravascular contrast agent study. Magn Reson Med 23:21–30

    Article  CAS  Google Scholar 

  • Mugler JP III, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157

    Article  Google Scholar 

  • Nöth U, Laufs H, Störmer R, Deichmann R (2012) Simultaneous electroencephalography-functional MRI at 3 T: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place. J Magn Reson Imaging 35:561–571

    Article  Google Scholar 

  • Nöth U, Shrestha M, SchĂ¼re JR, Deichmann R (2017) Quantitative in vivo T2 mapping using fast spin echo techniques—a linear correction procedure. Neuroimage 157:476–485

    Article  Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    Article  CAS  Google Scholar 

  • Ostergaard L, Smith DF, Vestergaard-Poulsen P, Hansen SB, Gee AD, Gjedde A, Gyldensted C (1998) Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. J Cereb Blood Flow Metab 18:425–432

    Article  CAS  Google Scholar 

  • Perles-Barbacaru AT, Lahrech H (2007) A new magnetic resonance imaging method for mapping the cerebral blood volume fraction: the rapid steady-state T1 method. J Cereb Blood Flow Metab 27:618–631

    Article  Google Scholar 

  • Polimeni JR, Fischl B, Greve DN, Wald LL (2010) Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52:1334–1346

    Article  Google Scholar 

  • Poser BA, Norris DG (2009) 3D single-shot VASO using a Maxwell gradient compensated GRASE sequence. Magn Reson Med 62:255–262

    Article  Google Scholar 

  • Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38

    Article  CAS  Google Scholar 

  • Qiu D, Zaharchuk G, Christen T, Ni WW, Moseley ME (2012) Contrast-enhanced functional blood volume imaging (CE-fBVI): enhanced sensitivity for brain activation in humans using the ultrasmall superparamagnetic iron oxide agent ferumoxytol. Neuroimage 62:1726–1731

    Article  Google Scholar 

  • Rooney WD, Johnson G, Li X, Cohen ER, Kim S-G, Ugurbil K, Springer CS (2007) Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318

    Article  CAS  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  CAS  Google Scholar 

  • Schluppeck D, Panchuelo RM, Francis ST (2018) Exploring structure and function of sensory cortex with 7T MRI. Neuroimage 164:10–17

    Article  Google Scholar 

  • Schmid S, Petersen ET, Van Osch MJP (2017) Insight into the labeling mechanism of acceleration selective arterial spin labeling. Magn Reson Mater Phys 30:165–174

    Article  Google Scholar 

  • Schwarzbauer C, Syha J, Haase A (1993) Quantification of regional blood volumes by rapid T1 mapping. Magn Reson Med 29:709–712

    Article  CAS  Google Scholar 

  • Scouten A, Constable RT (2007) Applications and limitations of whole-brain MAGIC VASO functional imaging. Magn Reson Med 58:306–315

    Article  CAS  Google Scholar 

  • Shen T, Weissleder R, Papisov M, Bogdanov A, Brady TJ (1993) Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med 9:599–604

    Article  Google Scholar 

  • Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9:569–577

    Article  CAS  Google Scholar 

  • Shmuel A, Yacoub E, Chaimow D, Logothetis NK, Ugurbil K (2007) Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla. Neuroimage 35:539–552

    Article  Google Scholar 

  • Siero JCW, Hermes D, Hoogduin H, Luijten PR, Ramsey NF, Petridou N (2014) BOLD matches neuronal activity at the mm scale: a combined 7 T fMRI and ECoG study in human sensorimotor cortex. Neuroimage 101:177–184

    Article  Google Scholar 

  • Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26:1004–1027

    Article  Google Scholar 

  • Stefanovic B, Warnking JM, Pike GB (2004) Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22:771–778

    Article  Google Scholar 

  • Stefanovic B, Warnking JM, Kobayashi E, Bagshaw AP, Hawco C, Dubeau F, Gotman J, Pike GB (2005) Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. Neuroimage 28:205–215

    Article  Google Scholar 

  • Sten S, Witt ST, Cedersund G, Elinder F (2017) Neural inhibition can explain negative BOLD responses: a mechanistic modelling and fMRI study. Neuroimage 158:219–231

    Article  CAS  Google Scholar 

  • Storti SF, Boscolo Galazzo I, Del Felice A, Pizzini FB, Arcaro C, Formaggio E, Mai R, Manganotti P (2014) Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. Neuroimage 102:49–59

    Article  CAS  Google Scholar 

  • Tofts P (2003) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, Chichester

    Book  Google Scholar 

  • Turner R (2002) How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage 16:1062–1067

    Article  Google Scholar 

  • Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim SG, Menon R, Merkle H, Ogawa S, Salmi R (1993) Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q 9:259–277

    CAS  Google Scholar 

  • Uh J, Lewis-Amezcua K, Varghese R, Lu H (2009) On the measurement of absolute cerebral blood volume (CBV) using vascular-space-occupancy (VASO) MRI. Magn Reson Med 61:659–667

    Article  Google Scholar 

  • van Zijl PC, Hua J, Lu H (2012) The BOLD post-stimulus undershoot, one of the most debated issues in fMRI. Neuroimage 62:1092–1102

    Article  Google Scholar 

  • Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32:565–577

    Article  CAS  Google Scholar 

  • Wang DJJ, Alger JR, Qiao JX, Gunther M, Pope WB, Saver JL, Salamon N, Liebeskind DS for the UCLA Stroke Investigators (2013) Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke—comparison with dynamic susceptibility contrast enhanced perfusion imaging. Neuroimage Clin 3:1–7

    Article  Google Scholar 

  • Wansapura JP, Holland SK, Dunn RS, Ball WS (1999) NMR relaxation times in the human brain at 3.0 Tesla. J Magn Reson Imaging 9:531–538

    Article  CAS  Google Scholar 

  • White CM, Pope WB, Zaw T, Qiao J, Naeini KM, Lai A, Nghiemphu PL, Wang JJ, Cloughesy TF, Ellingson BM (2014) Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors. J Neuroimaging 24:23–30

    Article  Google Scholar 

  • Willats L, Calamante F (2013) The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI. NMR Biomed 26:913–931

    Article  Google Scholar 

  • Wong EC (2005) Quantifying CBF with pulsed ASL: technical and pulse sequence factors. J Magn Reson Imaging 22:727–731

    Article  Google Scholar 

  • Wong EC (2013) New developments in arterial spin labeling pulse sequences. NMR Biomed 26:887–891

    Article  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249

    Article  CAS  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPPS and QUIPSS II). Magn Reson Med 39:702–708

    Article  CAS  Google Scholar 

  • Yacoub E, Harel N, Ugurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci U S A 105(30):10607–10612

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Deichmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deichmann, R., Nöth, U., Merola, A., Weiskopf, N. (2022). The Basics of Functional Magnetic Resonance Imaging. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics