Skip to main content

BOLD-Response and EEG Gamma Oscillations

  • Chapter
  • First Online:
EEG - fMRI

Abstract

Combined recordings of functional Magnetic Resonance Imaging (fMRI) and Electroencephalography (EEG) allow answering detailed questions about the real temporal dynamics of brain activity and the cooperation of brain regions. In this context, much effort has been made to explore the role of high frequency oscillations in the gamma band of the EEG. The integration of the high temporal resolution of EEG with the high spatial resolution of fMRI provides the possibility to look for correlations between human EEG gamma band activity and the BOLD response in combined experiments. Here, we discuss problems, recent developments, and research findings regarding the relation of EEG gamma activity and fMRI–BOLD signal and possible applications of the integration of EEG and fMRI in this field. According to several investigations, there seems to be a stronger correlation between the high-frequency components of the EEG signal and the BOLD response compared to lower frequency bands. We review technical challenges emerging in the simultaneous recordings of fMRI and gamma activity since the amplitudes of high-frequency EEG fractions are small, and the artifact handicap carries more weight. Statistical methods like principal component analysis (PCA) or independent component analysis (ICA), as well as various innovations in EEG- and fMRI-recording techniques may be putative solutions. Furthermore, we provide an overview regarding applications of fMRI analyses informed with time courses of EEG gamma activity used for uncovering processes of communication in the brain, for example, during the resting state, processes of visual spatial attention or working memory and cognitively demanding auditory information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre GK, Zarahn E, D’Esposito M (1998) The variability of human, BOLD hemodynamic responses. NeuroImage 8(4):360–369

    Article  CAS  Google Scholar 

  • Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? NeuroImage 11(1):66–84

    Article  CAS  Google Scholar 

  • Anami K, Mori T, Tanaka F, Kawagoe Y, Okamoto J, Yarita M, Ohnishi T, Yumoto M, Matsuda H, Saitoh O (2003) Stepping stone sampling for retrieving artifact-free electroencephalogram during functional magnetic resonance imaging. NeuroImage 19(2 Pt 1):281–295

    Article  Google Scholar 

  • Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Proc Mag 18:14–30

    Article  Google Scholar 

  • Bottger D, Herrmann CS, von Cramon DY (2002) Amplitude differences of evoked alpha and gamma oscillations in two different age groups. Int J Psychophysiol 45(3):245–251

    Article  Google Scholar 

  • Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15(1 Pt 1):47–60

    Article  CAS  Google Scholar 

  • Brookes MJ, Gibson AM, Hall SD, Furlong PL, Barnes GR, Hillebrand A, Singh KD, Holliday IE, Francis ST, Morris PG (2005) GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. NeuroImage 26(1):302–308

    Article  Google Scholar 

  • Brookes MJ, Vrba J, Mullinger KJ, Geirsdóttir GB, Yan WX, Stevenson CM, Bowtell R, Morris PG (2009) Source localisation in concurrent EEG/fMRI: applications at 7T. NeuroImage 45(2):440–452

    Article  Google Scholar 

  • Brovelli A, Lachaux JP, Kahane P, Boussaoud D (2005) High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. NeuroImage 28(1):154–164

    Article  Google Scholar 

  • Busch NA, Debener S, Kranczioch C, Engel AK, Herrmann CS (2004) Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response. Clin Neurophysiol 115(8):1810–1820

    Article  Google Scholar 

  • Busch NA, Schadow J, Frund I, Herrmann CS (2006) Time-frequency analysis of target detection reveals an early interface between bottom-up and top-down processes in the gamma-band. NeuroImage 29(4):1106–1116

    Article  Google Scholar 

  • Castelhano J, Duarte IC, Wibral M, Rodriguez E, Castelo-Branco M (2014) The dual facet of gamma oscillations: separate visual and decision making circuits as revealed by simultaneous EEG/fMRI. Hum Brain Mapp 35(10):5219–5235

    Article  Google Scholar 

  • Clark VP, Fannon S, Lai S, Benson R (2001) Paradigm-dependent modulation of event-related fMRI activity evoked by the oddball task. Hum Brain Mapp 14(2):116–127

    Article  CAS  Google Scholar 

  • Crick F, Koch C (1990) Towards a neurobiological theory of consciousness. Semin Neurosci 2:263–275

    Google Scholar 

  • Crone NE, Hao L, Hart J Jr, Boatman D, Lesser RP, Irizarry R, Gordon B (2001) Electrocorticographic gamma activity during word production in spoken and sign language. Neurology 57(11):2045–2053

    Article  CAS  Google Scholar 

  • D’Argembeau A, Collette F, Van der Linden M, Laureys S, Del Fiore G, Degueldre C, Luxen A, Salmon E (2005) Self-referential reflective activity and its relationship with rest: a PET study. NeuroImage 25(2):616–624

    Article  Google Scholar 

  • Damasio AR (1990) Synchronous activation in multiple cortical regions: a mechanism for recall. Semin Neurosci 2:287–296

    Google Scholar 

  • Debener S, Herrmann CS, Kranczioch C, Gembris D, Engel AK (2003) Top-down attentional processing enhances auditory evoked gamma band activity. Neuroreport 14(5):683–686

    Article  Google Scholar 

  • Delacour J (1997) Neurobiology of consciousness: an overview. Behav Brain Res 85(2):127–141

    Article  CAS  Google Scholar 

  • Demiralp T, Herrmann CS, Erdal ME, Ergenoglu T, Keskin YH, Ergen M, Beydagi H (2007) DRD4 and DAT1 polymorphisms modulate human gamma band responses. Cereb Cortex 17(5):1007–1019

    Article  Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 60(2):121–130

    Article  CAS  Google Scholar 

  • Engel AK, Singer W (2001) Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5(1):16–25

    Article  Google Scholar 

  • Eulitz C, Maess B, Pantev C, Friederici AD, Feige B, Elbert T (1996) Oscillatory neuromagnetic activity induced by language and non-language stimuli. Brain Res Cogn Brain Res 4(2):121–132

    Article  CAS  Google Scholar 

  • Fell J, Fernandez G, Klaver P, Elger CE, Fries P (2003) Is synchronized neuronal gamma activity relevant for selective attention? Brain Res Brain Res Rev 42(3):265–272

    Article  Google Scholar 

  • Fiebach CJ, Gruber T, Supp GG (2005) Neuronal mechanisms of repetition priming in occipitotemporal cortex: spatiotemporal evidence from functional magnetic resonance imaging and electroencephalography. J Neurosci 25(13):3414–3422

    Article  CAS  Google Scholar 

  • Foucher JR, Otzenberger H, Gounot D (2003) The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study. BMC Neurosci 4:22

    Article  Google Scholar 

  • Freyer F, Becker R, Anami K, Curio G, Villringer A, Ritter P (2009) Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction. NeuroImage 48(1):94–108

    Article  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480

    Article  Google Scholar 

  • Friston K (2002) Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu Rev Neurosci 25:221–250

    Article  CAS  Google Scholar 

  • Giraud AL, Kleinschmidt A, Poeppel D, Lund TE, Frackowiak RS, Laufs H (2007) Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56(6):1127–1134

    Article  CAS  Google Scholar 

  • Goldberg TE, Weinberger DR (2004) Genes and the parsing of cognitive processes. Trends Cogn Sci 8(7):325–335

    Article  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213):334–337

    Article  CAS  Google Scholar 

  • Green JJ, Boehler CN, Roberts KC, Chen LC, Krebs RM, Song AW, Woldorff MG (2017) Cortical and subcortical coordination of visual spatial attention revealed by simultaneous EEG-fMRI recording. J Neurosci 37(33):7803–7810

    Article  CAS  Google Scholar 

  • Gurtubay IG, Alegre M, Labarga A, Malanda A, Artieda J (2004) Gamma band responses to target and non-target auditory stimuli in humans. Neurosci Lett 367(1):6–9

    Article  CAS  Google Scholar 

  • Haenschel C, Bittner RA, Waltz J, Haertling F, Wibral M, Singer W, Linden DE, Rodriguez E (2009) Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci 29(30):9481–9489

    Article  CAS  Google Scholar 

  • Herrmann CS, Munk MH, Engel AK (2004) Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 8(8):347–355

    Article  Google Scholar 

  • Huang X, Long Z, Lei X (2019) Electrophysiological signatures of the resting-state fMRI global signal: a simultaneous EEG-fMRI study. J Neurosci Methods 311:351–359

    Article  Google Scholar 

  • Hummel JE, Biederman I (1992) Dynamic binding in a neural network for shape recognition. Psychol Rev 99(3):480–517

    Article  CAS  Google Scholar 

  • Hutchison RM, Hashemi N, Gati JS, Menon RS, Everling S (2015) Electrophysiological signatures of spontaneous BOLD fluctuations in macaque prefrontal cortex. NeuroImage 113:257–267

    Article  Google Scholar 

  • Kim HC, Yoo SS, Lee JH (2015) Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data. NeuroImage 104:437–451

    Article  Google Scholar 

  • Kirino E, Belger A, Goldman-Rakic P, McCarthy G (2000) Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: an event-related functional magnetic resonance imaging study. J Neurosci 20(17):6612–6618

    Article  CAS  Google Scholar 

  • Kyathanahally SP, Wang Y, Calhoun VD, Deshpande G (2017) Investigation of true high frequency electrical substrates of fMRI-based resting state networks using parallel independent component analysis of simultaneous EEG/fMRI data. Front Neuroinform 11:74

    Article  Google Scholar 

  • Lachaux JP, George N, Tallon-Baudry C, Martinerie J, Hugueville L, Minotti L, Kahane P, Renault B (2005) The many faces of the gamma band response to complex visual stimuli. NeuroImage 25(2):491–501

    Article  Google Scholar 

  • Lachaux JP, Fonlupt P, Kahane P, Minotti L, Hoffmann D, Bertrand O, Baciu M (2007) Relationship between task-related gamma oscillations and BOLD signal: new insights from combined fMRI and intracranial EEG. Hum Brain Mapp 28(12):1368–1375

    Article  Google Scholar 

  • Leicht G, Kirsch V, Giegling I, Karch S, Hantschk I, Möller HJ, Pogarell O, Hegerl U, Rujescu D, Mulert C (2010) Reduced early auditory evoked gamma-band response in patients with schizophrenia. Biol Psychiatry 67(3):224–231

    Article  Google Scholar 

  • Leicht G, Karch S, Karamatskos E, Giegling I, Möller HJ, Hegerl U, Pogarell O, Rujescu D, Mulert C (2011) Alterations of the early auditory evoked gamma-band response in first-degree relatives of patients with schizophrenia: hints to a new intermediate phenotype. J Psychiatr Res 45(5):699–705

    Article  Google Scholar 

  • Leicht G, Andreou C, Polomac N, Lanig C, Schöttle D, Lambert M, Mulert C (2015) Reduced auditory evoked gamma band response and cognitive processing deficits in first episode schizophrenia. World J Biol Psychiatry 16(6):387–397

    Article  Google Scholar 

  • Leicht G, Vauth S, Polomac N, Andreou C, Rauh J, Mußmann M, Karow A, Mulert C (2016) EEG-informed fMRI reveals a disturbed gamma-band-specific network in subjects at high risk for psychosis. Schizophr Bull 42(1):239–249

    Google Scholar 

  • Lindsley DB (1952) Psychological phenomena and the electroencephalogram. Electroencephalogr Clin Neurophysiol 4(4):443–456

    Article  CAS  Google Scholar 

  • Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Phil Trans R Soc Lond Ser B Biol Sci 357(1424):1003–1037

    Article  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  Google Scholar 

  • Lohmann G, von Cramon DY, Steinmetz H (1999) Sulcal variability of twins. Cereb Cortex 9(7):754–763

    Article  CAS  Google Scholar 

  • Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295(5555):690–694

    Article  CAS  Google Scholar 

  • von der Malsburg C (1994) The correlation theory of brain function. In: Domany E et al (eds) Models of neural networks, vol II. Springer, New York, NY, pp 95–119

    Chapter  Google Scholar 

  • Mandelkow H, Halder P, Boesiger P, Brandeis D (2006) Synchronization facilitates removal of MRI artefacts from concurrent EEG recordings and increases usable bandwidth. NeuroImage 32(3):1120–1126

    Article  CAS  Google Scholar 

  • Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104(32):13170–13175

    Article  CAS  Google Scholar 

  • Mathiesen C, Caesar K, Lauritzen M (2000) Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J Physiol 523(Pt 1):235–246

    Article  CAS  Google Scholar 

  • Matsuura T, Kanno I (2001) Quantitative and temporal relationship between local cerebral blood flow and neuronal activation induced by somatosensory stimulation in rats. Neurosci Res 40(3):281–290

    Article  CAS  Google Scholar 

  • Michels L, Bucher K, Lüchinger R, Klaver P, Martin E, Jeanmonod D, Brandeis D (2010) Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS One 5(4):e10298

    Article  Google Scholar 

  • Mizuhara H, Sato N, Yamaguchi Y (2015) Cortical networks dynamically emerge with the interplay of slow and fast oscillations for memory of a natural scene. NeuroImage 111:76–84

    Article  Google Scholar 

  • Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R (2005) Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309(5736):951–954

    Article  CAS  Google Scholar 

  • Mulert C, Leicht G, Pogarell O, Mergl R, Karch S, Juckel G, Moller HJ, Hegerl U (2007) Auditory cortex and anterior cingulate cortex sources of the early evoked gamma-band response: relationship to task difficulty and mental effort. Neuropsychologia 45(10):2294–2306

    Article  Google Scholar 

  • Mulert C, Hepp P, Leicht G, Karch S, Lutz J, Moosmann M, Reiser M, Hegerl U, Pogarell O, Möller HJ, Jäger L (2010) High frequency oscillations in the gamma-band and the corresponding BOLD signal: trial-by-trial coupling of EEG and fMRI reveals the involvement of the thalamic reticular nucleus (TRN). NeuroImage 49(3):2238–2247

    Article  CAS  Google Scholar 

  • Muller MM, Keil A (2004) Neuronal synchronization and selective color processing in the human brain. J Cogn Neurosci 16(3):503–522

    Article  Google Scholar 

  • Murta T, Chaudhary UJ, Tierney TM, Dias A, Leite M, Carmichael DW, Figueiredo P, Lemieux L (2017) Phase-amplitude coupling and the BOLD signal: a simultaneous intracranial EEG (icEEG) - fMRI study in humans performing a finger-tapping task. NeuroImage 146:438–451

    Article  CAS  Google Scholar 

  • Murthy VN, Fetz EE (1992) Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci U S A 89(12):5670–5674

    Article  CAS  Google Scholar 

  • Neuenschwander S, Singer W (1996) Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379(6567):728–732

    Article  CAS  Google Scholar 

  • Niebur E et al (1993) An oscillation-based model for the neuronal basis of attention. Vis Res 33:2789–2802

    Article  CAS  Google Scholar 

  • Niedermeyer E, Lopes Da Silva F (2004) Electroencephalography: basic principles, clinical applications and related fields, 5th edn. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  • Nierhaus T, Gundlach C, Goltz D, Thiel SD, Pleger B, Villringer A (2013) Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI. NeuroImage 74:70–76

    Article  Google Scholar 

  • Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RA (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309(5736):948–951

    Article  CAS  Google Scholar 

  • Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New York, NY

    Google Scholar 

  • Pantev C, Makeig S, Hoke M, Galambos R, Hampson S, Gallen C (1991) Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci U S A 88(20):8996–9000

    Article  CAS  Google Scholar 

  • Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Comm 41:245–255

    Article  Google Scholar 

  • Polomac N, Leicht G, Nolte G, Andreou C, Schneider TR, Steinmann S, Engel AK, Mulert C (2015) Generators and connectivity of the early auditory evoked gamma band response. Brain Topogr 28(6):865–878

    Article  Google Scholar 

  • Pulvermuller F (1999) Words in the brain’s language. Behav Brain Sci 22(2):253–279. discussion 280–336

    Article  CAS  Google Scholar 

  • Pulvermuller F, Lutzenberger W, Preissl H, Birbaumer N (1995) Spectral responses in the gamma-band: physiological signs of higher cognitive processes? Neuroreport 6(15):2059–2064

    Article  CAS  Google Scholar 

  • Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, Zilles K (2001) Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage 13(4):669–683

    Article  CAS  Google Scholar 

  • Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30(6):823–838

    Article  Google Scholar 

  • Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612):157–161

    Article  CAS  Google Scholar 

  • Senkowski D, Talsma D, Grigutsch M, Herrmann CS, Woldorff MG (2007) Good times for multisensory integration: effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia 45(3):561–571

    Article  Google Scholar 

  • Speckmann EJ, Elger CE (1999) Introduction to the neurophysiological basis of the EEG and DC potentials. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography, basic principles, clinical applications and related fields. Lippincott Williams and Wilkins, Philadelphia, PA, pp 15–27

    Google Scholar 

  • Struber D, Basar-Eroglu C, Hoff E, Stadler M (2000) Reversal-rate dependent differences in the EEG gamma-band during multistable visual perception. Int J Psychophysiol 38(3):243–252

    Article  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme Medical Publishers, New York, NY

    Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3(4):151–162

    Article  CAS  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16(13):4240–4249

    Article  CAS  Google Scholar 

  • Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Naatanen R (1993) Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364(6432):59–60

    Article  CAS  Google Scholar 

  • Traub RD, Whittington MA, Colling SB, Buzsaki G, Jefferys JG (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J Physiol 493(Pt 2):471–484

    Article  CAS  Google Scholar 

  • Treisman A (1996) The binding problem. Curr Opin Neurobiol 6(2):171–178

    Article  CAS  Google Scholar 

  • Uji M, Wilson R, Francis ST, Mullinger KJ, Mayhew SD (2018) Exploring the advantages of multiband fMRI with simultaneous EEG to investigate coupling between gamma frequency neural activity and the BOLD response in humans. Hum Brain Mapp 39(4):1673–1687

    Article  Google Scholar 

  • Winterer G, Musso F, Vucurevic G, Stoeter P, Konrad A, Seker B, Gallinat J, Dahmen N, Weinberger DR (2006) COMT genotype predicts BOLD signal and noise characteristics in prefrontal circuits. NeuroImage 32(4):1722–1732

    Article  Google Scholar 

  • Young GB, Pigott SE (1999) Neurobiological basis of consciousness. Arch Neurol 56(2):153–157

    Article  CAS  Google Scholar 

  • Zhao X, Li X, Yao L (2017) Localized fluctuant oscillatory activity by working memory load: a simultaneous EEG-fMRI study. Front Behav Neurosci 11:215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Leicht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leicht, G., Herrmann, C.S., Mulert, C. (2022). BOLD-Response and EEG Gamma Oscillations. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Cham. https://doi.org/10.1007/978-3-031-07121-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07121-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07120-1

  • Online ISBN: 978-3-031-07121-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics