Skip to main content

Cryopreservation to Conserve Genetic Diversity of Reef-Building Corals

  • Chapter
  • First Online:
Coral Reef Conservation and Restoration in the Omics Age

Part of the book series: Coral Reefs of the World ((CORW,volume 15))

  • 1306 Accesses

Abstract

Long-term survival of coral reefs around the world is threatened by local and global stressors. However, modern reproductive technologies may offer solutions to save coral genetic and biological diversity. Cryopreservation can store genetic material safely for years and potentially even centuries, thus providing present and future restoration options. Sperm from over 40 coral species have been banked and used in selective breeding experiments. Coral larvae and algal symbionts have been cryopreserved by vitrification and recovered using ultra-rapid laser warming technologies. At industrial scale, and coupled with effective restoration and management, these technologies may help to diversify shrinking populations, prevent species extinctions, and allow the creation of live genome resource banks to support reef recovery efforts. As the climate changes, coral bleaching events are becoming more common, threatening coral populations and diminishing their ability to recover naturally through reproduction. The development of new cryopreservation technologies for non-reproductive tissues is therefore essential. Advanced technologies to cryopreserve small coral fragments are in progress and could potentially secure the entire coral holobiont, including coral cells, algal symbionts, and the microbiome. These new technologies may allow us to preserve material throughout the year, paving the way for new solutions to help corals to survive warming oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrego D, Van Oppen MJ, Willis BL (2009) Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol Ecol 18:3532–3543

    Article  PubMed  Google Scholar 

  • Agca Y (2012) Genome resource banking of biomedically important laboratory animals. Theriogenology 78:1653–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Alquézar-Baeta C, Gimeno-Martos S, Miguel-Jiménez S, Santolaria P, Yániz J, Palacín I, Casao A, Cebrián-Pérez JÁ, Muiño-Blanco T, Pérez-Pé R (2019) OpenCASA: a new open-source and scalable tool for sperm quality analysis. PLoS Comput Biol 15:e1006691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez-Filip L, Estrada-Saldívar N, Pérez-Cervantes E, Molina-Hernández A, González-Barrios FJ (2019) A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7:e8069

    Article  PubMed  PubMed Central  Google Scholar 

  • Arav A, Pearl M, Zeron Y (2000) Does membrane lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes? Cryo Letters 21:179–186

    CAS  PubMed  Google Scholar 

  • Argyle CE, Harper JC, Davies MC (2016) Oocyte cryopreservation: where are we now? Hum Reprod Update 22:440–449

    Article  CAS  PubMed  Google Scholar 

  • Bahr KD, Jokiel PL, Rodgers KS (2015) The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi. PeerJ 3:e1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahr KD, Rodgers KS, Jokiel PL (2017) Impact of three bleaching events on the reef resiliency of Kāne‘ohe Bay, Hawai‘i. Front Mar Sci 4:398

    Article  Google Scholar 

  • Baums IB (2008) A restoration genetics guide for coral reef conservation. Mol Ecol 17:2796–2811

    Article  PubMed  Google Scholar 

  • Beltran V, Puill-Stephan E, Howells E, Flores-Moya A, Doblin M, Núñez-Lara E, Escamilla V, Lopez T, van Oppen M (2021) Physiological diversity among sympatric, conspecific endosymbionts of coral (Cladocopium C1acro) from the Great Barrier Reef. Coral Reefs 40:1–13

    Article  Google Scholar 

  • Bhat G, Sofi K (2021) Oocyte and embryo preservation in wild animals: an update. Cryo Letters 42:251–260

    PubMed  Google Scholar 

  • Bouwmeester J, Daly J, Zuchowicz N, Lager C, Hagedorn M (2019) Climate change alters the cryophysiology of coral symbiotic dinoflagellates. Cryobiology 91:170. https://doi.org/10.1016/j.cryobiol.2019.10.100

    Article  Google Scholar 

  • Bouwmeester J, Daly J, Quinn M, Henley EM, Lager C, Perry R, Page CA, Hagedorn M (2022) Securing algal endosymbiont communities for reef-building corals. bioRxiv. https://doi.org/10.1101/2022.06.14.495714

  • Bucher M, Wolfowicz I, Voss PA, Hambleton EA, Guse A (2016) Development and symbiosis establishment in the cnidarian endosymbiosis model Aiptasia sp. Sci Rep 6:1–11

    Article  CAS  Google Scholar 

  • Chong G, Tsai S, Wang L-H, Huang C-Y, Lin C (2016) Cryopreservation of the gorgonian endosymbiont Symbiodinium. Sci Rep 6:18816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirino L, Wen Z-H, Hsieh K, Huang C-L, Leong QL, Wang L-H, Chen C-S, Daly J, Tsai S, Lin C (2019) First instance of settlement by cryopreserved coral larvae in symbiotic association with dinoflagellates. Sci Rep 9:18851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comizzoli P, Songsasen N, Hagedorn M, Wildt D (2012) Comparative cryobiological traits and requirements for gametes and gonadal tissues collected from wildlife species. Theriogenology 78:1666–1681

    Article  CAS  PubMed  Google Scholar 

  • Couch CS, Burns JH, Liu G, Steward K, Gutlay TN, Kenyon J, Eakin CM, Kosaki RK (2017) Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian islands). PLoS One 12:e0185121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daly J, Zuchowicz N, Nuñez Lendo CI, Khosla K, Lager C, Henley EM, Bischof J, Kleinhans FW, Lin C, Peters EC, Hagedorn M (2018) Successful cryopreservation of coral larvae using vitrification and laser warming. Sci Rep 8:15714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daly J, Bouwmeester J, Zuchowicz N, Lager C, Page C, Khosla K, Bischof J, Hagedorn M (2020) Securing coral reef biodiversity with cryopreservation. Cryobiology 97:279. https://doi.org/10.1016/j.cryobiol.2020.10.116

    Article  Google Scholar 

  • Daly J, Hobbs RJ, Zuchowicz N, O’Brien JK, Bouwmeester J, Bay LK, Quigley K, Hagedorn M (2022) Cryopreservation can assist gene flow on the Great Barrier Reef. Coral Reefs 41:455–462

    Article  Google Scholar 

  • Day J, Brand J (2005) Cryopreservation methods for maintaining cultures. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, New York, pp 165–187

    Google Scholar 

  • Díaz-Almeyda E, Thomé PE, El Hafidi M, Iglesias-Prieto R (2011) Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium. Coral Reefs 30:217–225

    Article  Google Scholar 

  • Dungan AM, Hartman LM, Tortorelli G, Belderok R, Lamb AM, Pisan L, McFadden GI, Blackall LL, van Oppen MJ (2020) Exaiptasia diaphana from the great barrier reef: a valuable resource for coral symbiosis research. Symbiosis 80:195–206

    Article  CAS  Google Scholar 

  • Eakin CM, Sweatman HP, Brainard RE (2019) The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38:539–545

    Article  Google Scholar 

  • Estrada-Saldívar N, Quiroga-García BA, Pérez-Cervantes E, Rivera-Garibay OO, Alvarez-Filip L (2021) Effects of the stony coral tissue loss disease outbreak on coral communities and the benthic composition of Cozumel reefs. Front Mar Sci 8:632777

    Article  Google Scholar 

  • França FM, Benkwitt CE, Peralta G, Robinson JP, Graham NA, Tylianakis JM, Berenguer E, Lees AC, Ferreira J, Louzada J (2020) Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos Trans R Soc B Biol Sci 375:20190116

    Article  Google Scholar 

  • Frölicher TL, Fischer EM, Gruber N (2018) Marine heatwaves under global warming. Nature 560:360–364

    Article  PubMed  CAS  Google Scholar 

  • Fujise L, Suggett DJ, Stat M, Kahlke T, Bunce M, Gardner SG, Goyen S, Woodcock S, Ralph PJ, Seymour JR (2021) Unlocking the phylogenetic diversity, primary habitats, and abundances of free-living Symbiodiniaceae on a coral reef. Mol Ecol 30:343–360

    Article  PubMed  Google Scholar 

  • Giaretta E, Munerato M, Yeste M, Galeati G, Spinaci M, Tamanini C, Mari G, Bucci D (2017) Implementing an open-access CASA software for the assessment of stallion sperm motility: relationship with other sperm quality parameters. Anim Reprod Sci 176:11–19

    Article  PubMed  Google Scholar 

  • González-Pech RA, Bhattacharya D, Ragan MA, Chan CX (2019) Genome evolution of coral reef symbionts as intracellular residents. Trends Ecol Evol 34:799–806

    Article  PubMed  Google Scholar 

  • Goulet TL, Lucas MQ, Schizas NV (2019) Symbiodiniaceae genetic diversity and symbioses with hosts from shallow to mesophotic coral ecosystems. In: Loya Y, Puglise K, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, Cham, pp 537–551

    Chapter  Google Scholar 

  • Grosso-Becerra MV, Mendoza-Quiroz S, Maldonado E, Banaszak AT (2021) Cryopreservation of sperm from the brain coral Diploria labyrinthiformis as a strategy to face the loss of corals in the Caribbean. Coral Reefs 40:937–950

    Article  Google Scholar 

  • Hagedorn M (2021) Coral species cryopreserved with global collaborators. Smithsonian’s National Zoo & Conservation Biology Institute, updated December 2021. https://nationalzoo.si.edu/center-for-species-survival/coral-species-cryopreserved-globalcollaborators

  • Hagedorn M, Carter V, Leong J, Kleinhans F (2010) Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium). Cryobiology 60:147–158

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn M, Carter V, Martorana K, Paresa MK, Acker J, Baums IB, Borneman E, Brittsan M, Byers M, Henley M, Laterveer M, Leong J-A, McCarthy M, Meyers S, Nelson BD, Petersen D, Tiersch T, Cuevas Uribe R, Woods E, Wildt D (2012b) Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS One 7:e33354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagedorn M, Carter VL (2015) Seasonal preservation success of the marine dinoflagellate coral symbiont, Symbiodinium sp. PLoS One 10:e0136358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagedorn M, Carter VL, Henley EM, Van Oppen MJ, Hobbs R, Spindler RE (2017) Producing coral offspring with cryopreserved sperm: a tool for coral reef restoration. Sci Rep 7:14432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagedorn M, Carter VL, Lager C, Camperio Ciani JF, Dygert AN, Schleiger RD, Henley EM (2016) Potential bleaching effects on coral reproduction. Reprod Fertil Dev 28:1061–1071

    Article  CAS  Google Scholar 

  • Hagedorn M, Farrell A, Carter VL (2013) Cryobiology of coral fragments. Cryobiology 66:17–23

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn M, Page CA, O’Neil KL, Flores DM, Tichy L, Conn T, Chamberland VF, Lager C, Zuchowicz N, Lohr K (2021) Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc Natl Acad Sci 118:e2110559118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagedorn M, Spindler R, Daly J (2019) Cryopreservation as a tool for reef restoration: 2019. In: Comizzoli P, Brown JL, Hold WV (eds) Reproductive sciences in animal conservation. Springer Nature, Cham, pp 489–505

    Chapter  Google Scholar 

  • Hagedorn M, van Oppen MJ, Carter V, Henley M, Abrego D, Puill-Stephan E, Negri A, Heyward A, MacFarlane D, Spindler R (2012a) First frozen repository for the Great Barrier Reef coral created. Cryobiology 65:157–158

    Article  PubMed  Google Scholar 

  • Heron SF, Maynard JA, van Hooidonk R, Eakin CM (2016) Warming trends and bleaching stress of the world’s coral reefs 1985–2012. Sci Rep 6:38402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeksema BW, Cairns S (2021) World list of Scleractinia. Accessed at http://www.marinespecies.org/scleractinia. Accessed 14 Sep 2021

  • Howells EJ, Bauman AG, Vaughan GO, Hume BC, Voolstra CR, Burt JA (2020) Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol Ecol 29:899–911

    Article  CAS  PubMed  Google Scholar 

  • Hu E, Childress W, Tiersch TR (2017) 3-D printing provides a novel approach for standardization and reproducibility of freezing devices. Cryobiology 76:34–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Chase TJ, Dietzel A, Hill T, Hoey AS, Hoogenboom MO, Jacobson M (2019) Global warming impairs stock–recruitment dynamics of corals. Nature 568:387–390

    Article  CAS  PubMed  Google Scholar 

  • Hume BC, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf. Sci Rep 5:8562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston EC, Counsell CW, Sale TL, Burgess SC, Toonen RJ (2020) The legacy of stress: coral bleaching impacts reproduction years later. Funct Ecol 34:2315–2325

    Article  Google Scholar 

  • Khosla K, Wang Y, Hagedorn M, Qin Z, Bischof J (2017) Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano 11:7869–7878

    Article  CAS  PubMed  Google Scholar 

  • Kihika JK, Wood SA, Rhodes L, Smith KF, Thompson L, Challenger S, Ryan KG (2022) Cryoprotectant treatment tests on three morphologically diverse marine dinoflagellates and the cryopreservation of Breviolum sp. (Symbiodiniaceae). Sci Rep 12:1–12

    Article  CAS  Google Scholar 

  • Kitahara MV, Fukami H, Benzoni F, Huang D (2016) The new systematics of Scleractinia: integrating molecular and morphological evidence. In: Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future: the world of medusa and her sisters. Springer, Cham, pp 41–59

    Chapter  Google Scholar 

  • Koštál V, Zahradníčková H, Šimek P (2011) Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen. Proc Natl Acad Sci 108:13041

    Article  PubMed  PubMed Central  Google Scholar 

  • Krueger T, Gates RD (2012) Cultivating endosymbionts — host environmental mimics support the survival of Symbiodinium C15 ex hospite. J Exp Mar Biol Ecol 413:169–176

    Article  Google Scholar 

  • Lacy RC (1993) VORTEX: a computer simulation model for population viability analysis. Wildlife Res 20:45–65

    Article  Google Scholar 

  • Lacy RC (2019) Lessons from 30 years of population viability analysis of wildlife populations. Zoo Biol 38:67–77

    Article  PubMed  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Cur Biol 28:2570–2580.e2576

    Article  CAS  Google Scholar 

  • Lin C, Kuo F-W, Chavanich S, Viyakarn V (2014) Membrane lipid phase transition behavior of oocytes from three gorgonian corals in relation to chilling injury. PLoS One 9:e92812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin C, Thongpoo P, Juri C, Wang L-H, Meng P-J, Kuo F-W, Tsai S (2019) Cryopreservation of a thermotolerant lineage of the coral reef dinoflagellate Symbiodinium. Biopreserv Biobank 17:520–529

    Article  CAS  PubMed  Google Scholar 

  • Littman RA, van Oppen MJ, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Biol Ecol 364:48–53

    Article  Google Scholar 

  • Mazur P (1970) Cryobiology: the freezing of biological systems: the responses of living cells to ice formation are of theoretical interest and practical concern. Science 168:939–949

    Article  CAS  PubMed  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Amer J Physiol Cell Physiol 247:C125–C142

    Article  CAS  Google Scholar 

  • Muller EM, Sartor C, Alcaraz NI, van Woesik R (2020) Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. Front Mar Sci 7:163

    Article  Google Scholar 

  • Muscatine L, Falkowski P, Dubinsky Z (1983) Carbon budgets in symbiotic associations. In: Schwemmler W, Schenk H (eds) Endocytobiology II. Walter de Gruyter & Co, Berlin, pp 649–658

    Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light-and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc Royal Soc B 222:181–202

    CAS  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (2019) A research review of interventions to increase the persistence and resilience of coral reefs. National Academies Press, Washington, DC, 258 pp

    Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Ann Rev Plant Biol 47:541–568

    Article  CAS  Google Scholar 

  • Nitschke MR, Craveiro SC, Brandão C, Fidalgo C, Serôdio J, Calado AJ, Frommlet JC (2020) Description of Freudenthalidium gen. nov. and Halluxium gen. nov. to formally recognize clades Fr3 and H as genera in the family Symbiodiniaceae (Dinophyceae). J Phycol 56:923–940

    Article  CAS  PubMed  Google Scholar 

  • Nitschke MR, Davy SK, Ward S (2016) Horizontal transmission of Symbiodinium cells between adult and juvenile corals is aided by benthic sediment. Coral Reefs 35:335–344

    Article  Google Scholar 

  • Omori M, Fukami H, Kobinata H, Hatta M (2001) Significant drop of fertilization of Acropora corals in 1999: an after-effect of heavy coral bleaching? Limnol Oceanogr 46:704–706

    Article  Google Scholar 

  • Page CA, Muller EM, Vaughan DE (2018) Microfragmenting for the successful restoration of slow growing massive corals. Ecol Eng 123:86–94

    Article  Google Scholar 

  • Pochon X, Stat M, Takabayashi M, Chasqui L, Chauka LJ, Logan DD, Gates RD (2010) Comparison of endosymbiotic and free-living Symbiodinium (Dinophyceae) diversity in a Hawaiian reef environment. J Phycol 46:53–65

    Article  CAS  Google Scholar 

  • Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313:573–575

    Article  CAS  PubMed  Google Scholar 

  • Rhodes L, Smith J, Tervit R, Roberts R, Adamson J, Adams S, Decker M (2006) Cryopreservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae. Cryobiology 52:152–156

    Article  CAS  PubMed  Google Scholar 

  • Rodgers KS, Bahr KD, Jokiel PL, Donà AR (2017) Patterns of bleaching and mortality following widespread warming events in 2014 and 2015 at the Hanauma Bay nature preserve, Hawai‘i. PeerJ 5:e3355

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Lanetty M, Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Mar Biol 149:713–719

    Article  Google Scholar 

  • Rodriguez-Wallberg KA, Waterstone M, Anastácio A (2019) Ice age: cryopreservation in assisted reproduction – an update. Reprod Biol 19:119–126

    Article  PubMed  Google Scholar 

  • Rubinsky B, Perez PA, Carlson ME (2005) The thermodynamic principles of isochoric cryopreservation. Cryobiology 50:121–138

    Article  PubMed  Google Scholar 

  • Santiago-Vázquez LZ, Newberger NC, Kerr RG (2007) Cryopreservation of the dinoflagellate symbiont of the octocoral Pseudopterogorgia elisabethae. Mar Biol 152:549–556

    Article  Google Scholar 

  • Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: implications for extrapolating to the intact symbiosis. J Phycol 37:900–912

    Article  CAS  Google Scholar 

  • Smith AU, Polge C (1950) Survival of spermatozoa at low temperatures. Nature 166:668–669

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Sanger E, Saewu A, Leveille M-C (2020) Human sperm vitrification: the state of the art. Reprod Biol Endocrinol 18:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Häggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci 101:13531–13535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terraneo TI, Fusi M, Hume BC, Arrigoni R, Voolstra CR, Benzoni F, Forsman ZH, Berumen ML (2019) Environmental latitudinal gradients and host-specificity shape Symbiodiniaceae distribution in Red Sea Porites corals. J Biogeogr 46:2323–2335

    Article  Google Scholar 

  • Tiersch TR, Monroe WT (2016) Three-dimensional printing with polylactic acid (PLA) thermoplastic offers new opportunities for cryobiology. Cryobiology 73:396–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushijima B, Meyer JL, Thompson S, Pitts K, Marusich MF, Tittl J, Weatherup E, Reu J, Wetzell R, Aeby GS, Häse CC, Paul VJ (2020) Disease diagnostics and potential coinfections by Vibrio coralliilyticus during an ongoing coral disease outbreak in Florida. Front Microbiol 11:569354

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Oppen MJ, Oliver JK, Putnam HM, Gates RD (2015) Building coral reef resilience through assisted evolution. Proc Natl Acad Sci 112:2307–2313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wildt DE, Rall WF, Critser JK, Monfort SL, Seal US (1997) Genome resource banks: living collections for biodiversity conservation. Bioscience 47:689–698

    Article  Google Scholar 

  • Wilson-Leedy JG, Ingermann RL (2007) Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology 67:661–672

    Article  PubMed  Google Scholar 

  • Zuchowicz N, Daly J, Bouwmeester J, Lager C, Henley EM, Nuñez Lendo CI, Hagedorn M (2021b) Assessing coral sperm motility. Sci Rep 11:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuchowicz N, Daly J, Lager C, Williamson O, Hagedorn M (2021a) Freezing on the beach: a robust coral sperm cryopreservation design. Cryobiology 101:135–139

    Article  CAS  PubMed  Google Scholar 

  • Zuchowicz N, Hagedorn M, Daly J, Zhan L, Khosla K, Bischof J (2019) High throughput system for production and vitrification of biomaterials in cryoprotectant droplets. US provisional patent submission 62/811,847, International Application Number PCT/US2020/019692. https://patentscopewipoint/search/en/detailjsf?docId=WO2020176498&tab=PCTBIBLIO.US

    Google Scholar 

Download references

Acknowledgments

This work was supported by the William H. Donner Family Foundation, the Paul M. Angell Family Foundation, the Volgenau Foundation, the Barrett Family Foundation, the Skippy Frank Foundation, the Compton Foundation, the Cedar Hill Foundation, the Anela Kolohe Foundation, the Smithsonian Conservation Biology Institute, the Smithsonian Women’s Committee, and the Hawaii Institute of Marine Biology. We are grateful for the support of Claire Lager, Riley Perry, Chris Page, Mariko Quinn, Mike Henley, and Katherine Hardy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Bouwmeester .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bouwmeester, J., Daly, J., Zuchowicz, N., Hagedorn, M. (2022). Cryopreservation to Conserve Genetic Diversity of Reef-Building Corals. In: van Oppen, M.J.H., Aranda Lastra, M. (eds) Coral Reef Conservation and Restoration in the Omics Age. Coral Reefs of the World, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-031-07055-6_14

Download citation

Publish with us

Policies and ethics