Skip to main content

Faster Goal-Oriented Shortest Path Search for Bulk and Incremental Detailed Routing

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13265))

Abstract

We develop new algorithmic techniques for VLSI detailed routing. First, we improve the goal-oriented version of Dijkstra’s algorithm to find shortest paths in huge incomplete grid graphs with edge costs depending on the direction and the layer, and possibly on rectangular regions. We devise estimates of the distance to the targets that offer better trade-offs between running time and quality than previously known methods, leading to an overall speed-up. Second, we combine the advantages of the two classical detailed routing approaches—global shortest path search and track assignment with local corrections—by treating input wires (such as the output of track assignment) as reservations that can be used at a discount by the respective net. We show how to implement this new approach efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahrens, M., Henke, D., Rabenstein, S., Vygen, J.: Faster goal-oriented shortest path search for bulk and incremental detailed routing. arXiv:2111.06169 (2021)

  2. Ahrens, M.: Efficient algorithms for routing a net subject to VLSI design rules. Ph.D. thesis, University of Bonn (2020)

    Google Scholar 

  3. Ahrens, M., et al.: Detailed routing algorithms for advanced technology nodes. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(4), 563–576 (2015)

    Article  Google Scholar 

  4. Alpert, C.J., Mehta, D.P., Sapatnekar, S.S.: Handbook of Algorithms for Physical Design Automation. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  5. Batterywala, S., Shenoy, N., Nicholls, W., Zhou, H.: Track assignment: a desirable intermediate step between global routing and detailed routing. In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided Design, pp. 59–66 (2002)

    Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  7. Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15(2), 317–340 (1986)

    Article  MathSciNet  Google Scholar 

  8. Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: BonnRoute: algorithms and data structures for fast and good VLSI routing. ACM Trans. Des. Autom. Electron. Syst. 18(2), 1–24 (2013)

    Article  Google Scholar 

  9. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968)

    Article  Google Scholar 

  10. Held, S., Müller, D., Rotter, D., Scheifele, R., Traub, V., Vygen, J.: Global routing with timing constraints. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(2), 406–419 (2018)

    Article  Google Scholar 

  11. Hetzel, A.: A sequential detailed router for huge grid graphs. In: Proceedings of Design, Automation and Test in Europe, pp. 332–338. IEEE (1998)

    Google Scholar 

  12. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)

    Article  MathSciNet  Google Scholar 

  13. Klewinghaus, N.: Efficient detailed routing on optimized tracks. Ph.D. thesis, University of Bonn (2022)

    Google Scholar 

  14. Lawler, E., Luby, M., Parker, B.: Finding shortest paths in very large networks. In: Nagl, M., Perl, J. (eds.) Proceedings of Graph-Theoretic Concepts in Computer Science. Trauner, Linz (1983)

    Google Scholar 

  15. Lipton, H.J., Tarjan, R.E.: Applications of a planar separator theorem. In: 18th Annual IEEE Symposium on Foundations of Computer Science, pp. 162–170 (1977)

    Google Scholar 

  16. Müller, D., Radke, K., Vygen, J.: Faster min-max resource sharing in theory and practice. Math. Program. Comput. 3(1), 1–35 (2011). https://doi.org/10.1007/s12532-011-0023-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Peyer, S., Rautenbach, D., Vygen, J.: A generalization of Dijkstra’s shortest path algorithm with applications to VLSI routing. J. Discrete Algorithms 7(4), 377–390 (2009)

    Article  MathSciNet  Google Scholar 

  18. Preparata, F.P., Müller, D.E.: Finding the intersection of n half-spaces in time \(O(n \log n)\). Theoret. Comput. Sci. 8(1), 45–55 (1979)

    Article  MathSciNet  Google Scholar 

  19. Rubin, F.: The Lee path connection algorithm. IEEE Trans. Comput. 23, 907–914 (1974)

    Article  MathSciNet  Google Scholar 

  20. Sarnak, N., Tarjan, R.: Planar point location using persistent search trees. Commun. ACM 29(7), 669–679 (1986)

    Article  MathSciNet  Google Scholar 

  21. Sarrafzadeh, M., Lee, D.T.: Restricted track assignment with applications. Int. J. Comput. Geom. Appl. 4(1), 53–68 (1994)

    Article  MathSciNet  Google Scholar 

  22. Tellez, G., Hu, J., Wei, Y.: Routing. In: Lavagno, L., Markov, I.L., Martin, G., Scheffer, L.K. (eds.) Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology. CRC Press (2016)

    Google Scholar 

Download references

Acknowledgements

We thank the many other contributors to BonnRoute, in particular Niko Klewinghaus, Christian Roth, and Niklas Schlomberg. Thanks also to Lukas Kühne, who started the initial implementation of the reservations concept. We also thank Niklas Schlomberg for carefully reading a preliminary version of our manuscript. Dorothee Henke has partially been supported by Deutsche Forschungsgemeinschaft (DFG) under grant no. BU 2313/6, and the other authors under grants EXC 59 and EXC-2047 (Hausdorff Center for Mathematics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Rabenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahrens, M., Henke, D., Rabenstein, S., Vygen, J. (2022). Faster Goal-Oriented Shortest Path Search for Bulk and Incremental Detailed Routing. In: Aardal, K., Sanità, L. (eds) Integer Programming and Combinatorial Optimization. IPCO 2022. Lecture Notes in Computer Science, vol 13265. Springer, Cham. https://doi.org/10.1007/978-3-031-06901-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06901-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06900-0

  • Online ISBN: 978-3-031-06901-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics