Skip to main content

Fronthauling for 5G and Beyond

  • Chapter
  • First Online:
Broadband Connectivity in 5G and Beyond

Abstract

In the context of the next-generation passive optical network (NGPON), to provide the interactional link, the optical distribution unit (ODU), which works as splitter between the optical line terminal (OLT) and optical network unit (ONU), is fronthaul. The fronthaul framework is much vital in the realization of 5G and beyond in terms of capacity, latency, flexibility, reliability, etc. The study gives the explanation of fronthaul paradigms that presents the legacy as well as latest solutions by the analysis of significances and boundaries, respectively. In view of the incapacitating prospects, for the performance of 5G and beyond fronthaul, the hybrid PON architecture with distinct standards is also explored and analyzed corresponding to the network requirements and infrastructural gain. This chapter deliberates the concept of the high spectrum frequency band millimeter wave over fiber (MMWoF) techniques to overcome the dilemma of non-line of site (NLOS) by reusability of frequency band. Given context promotes the necessity of the fronthaul network infrastructure due to the dynamicity, adaptability, and flexibility. With this point of view, the beyond fronthaul network is getting equipped to adapt the dynamic changes by the time. In this context, the advance modulation and multiplexing techniques with high data rate up to multiple Tb/s in the framework of fronthaul network become key element to augment the objectives, such as long distance to be covered, latency discount, and traffic balancing, to modulate the high frequency and utilization of network resources in efficient manner. Furthermore, the combination of MMWoF and NGPON fronthaul plays the pivotal role with great potentials according to the fronthaul capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Jaber, M.A. Imran, R. Tafazolli, A. Tukmanov, 5G backhaul challenges and emerging research directions: a survey. IEEE Access 4, 1743–1766 (2016). https://doi.org/10.1109/ACCESS.2016.2556011

    Article  Google Scholar 

  2. S.E. Alavi, M.R.K. Soltanian, I.S. Amiri, M. Khalily, A.S.M. Supa’At, H. Ahmad, Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fronthaul. Sci. Rep. 6, 1–11 (2016). https://doi.org/10.1038/srep19891

    Article  Google Scholar 

  3. M.Z. Chowdhury, M. Shahjalal, M.K. Hasan, Y.M. Jang, The role of optical wireless communication technologies in 5G/6G and IoT solutions: prospects, directions, and challenges. Appl. Sci. 9(20) (2019). https://doi.org/10.3390/app9204367

  4. D. Konstantinou et al., 5G RAN architecture based on analog radio-over-fiber fronthaul over UDWDM-PON and phased array fed reflector antennas. Opt. Commun. 454(July 2019), 124464 (2020). https://doi.org/10.1016/j.optcom.2019.124464

    Article  Google Scholar 

  5. S.S. Jaffer, A. Hussain, M.A. Qureshi, W.S. Khawaja, Towards the shifting of 5G front haul traffic on passive optical network. Wirel. Pers. Commun. 0123456789, (2020). https://doi.org/10.1007/s11277-020-07115-6

  6. Multi-core Fiber Technology _ IntechOpen

    Google Scholar 

  7. D. Li et al., Bidirectional long-reach PON using Kramers-Kronig-based receiver for Rayleigh Backscattering noise and SSBI interference elimination. Opt. Express 26(15), 19020 (2018). https://doi.org/10.1364/oe.26.019020

    Article  Google Scholar 

  8. C. Konstadinidis, P. Sarigiannidis, P. Chatzimisios, P. Raptis, T.D. Lagkas, A multilayer comparative study of XG-PON and 10G-EPON standards. arXiv (2018)

    Google Scholar 

  9. I. Gasulla, J. Capmany, Multicore fibres for 5G fronthaul evolution 4. 1 Why 5G communications demand optical space-division multiplexing (2020), pp. 79–100

    Google Scholar 

  10. VIAVI Solutions, Passive Optical Network (PON) | VIAVI Solutions Inc. [Online]. Available: https://www.viavisolutions.com/en-us/passive-optical-network-pon

  11. M.O. Systems, M. Email, M. Texting, A. Pacific, Mobile statistics report, 2018–2022. 44 (2022)

    Google Scholar 

  12. T. Cisco, A. Internet, Cisco annual internet report (2018–2023). Comput. Fraud Secur. 2020(3), 4 (2020). [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1361372320300269

  13. Cisco, Cisco visual networking index (VNI) global mobile data traffic forecast update, 2017-2022 white paper. Ca, USA (2019), pp. 3–5. [Online]. Available: http://www.gsma.com/spectrum/wp-content/uploads/2013/03/Cisco_VNI-global-mobile-data-traffic-forecast-update.pdf

  14. Past and present reports – Mobility Report – Ericsson. [Online]. Available: https://www.ericsson.com/en/mobility-report/reports

  15. H.S. Abbas, M.A. Gregory, The next generation of passive optical networks: a review. J. Netw. Comput. Appl. 67, 53–74 (2016). https://doi.org/10.1016/j.jnca.2016.02.015

    Article  Google Scholar 

  16. G. Kramer, G. Pesavento, Ethernet passive optical network (EPON): building a next-generation optical access network. IEEE Commun. Mag. 40(2), 66–73 (2002). https://doi.org/10.1109/35.983910

    Article  Google Scholar 

  17. T. Horvath, P. Munster, V. Oujezsky, J. Vojtech, Activation process of ONU in EPON/GPON/XG-PON/NG-PON2 networks. Appl. Sci. 8(10) (2018). https://doi.org/10.3390/app8101934

  18. G.V. Arévalo, R.C. Hincapié, R. Gaudino, Optimization of multiple PON deployment costs and comparison between GPON, XGPON, NGPON2 and UDWDM PON. Opt. Switch. Netw. 25(March), 80–90 (2017). https://doi.org/10.1016/j.osn.2017.03.003

    Article  Google Scholar 

  19. M.E. Abdalla, S.M. Idrus, A.B. Mohammad, Hybrid TDM-WDM 10G-PON for high scalability next generation PON, in Proceedings of 2013 IEEE 8th Conference on Industrial Electronics and Applications. ICIEA 2013 (2013), pp. 1448–1450. https://doi.org/10.1109/ICIEA.2013.6566595

  20. L. Yi, Z. Li, M. Bi, W. Wei, W. Hu, Symmetric 40-Gb/s TWDM-PON with 39-dB power budget. IEEE Photon. Technol. Lett. 25(7), 644–647 (2013). https://doi.org/10.1109/LPT.2013.2246151

    Article  Google Scholar 

  21. M. Kumari, R. Sharma, A. Sheetal, Comparative Analysis of High Speed 20 / 20 Gbps for Long-Reach NG-PON2. J. Opt. Commun., 1–14 (2019)

    Google Scholar 

  22. “50G PON Takes A Step Closer to Reality as ITU-T Standard Achieves Consent.”

    Google Scholar 

  23. ZTE, White Paper on 50G-PON Technology (2020)

    Google Scholar 

  24. Z. Pi, F. Khan, An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011). https://doi.org/10.1109/MCOM.2011.5783993

    Article  Google Scholar 

  25. W. Roh et al., Millimeter-wave beamforming as an enabling technology for 5G cellular. IEEE Commun. Mag. 52(2), 106–113 (2014)

    Article  Google Scholar 

  26. G. Kalfas et al., Next generation fiber-wireless fronthaul for 5G mm wave networks. IEEE Commun. Mag. 57(3), 138–144 (2019). https://doi.org/10.1109/MCOM.2019.1800266

    Article  Google Scholar 

  27. P. T. Dat, A. Kanno, K. Inagaki, N. Yamamoto, and T. Kawanishi, “High-spectral efficiency millimeter wave-over-fiber system for future mobile fronthaul,” Eur. Conf. Opt. Commun. ECOC, 2015, 1, pp. 1–3, 2015, doi: https://doi.org/10.1109/ECOC.2015.7341822.

  28. C.T. Tsai, C.H. Lin, C.T. Lin, Y.C. Chi, G.R. Lin, 60-GHz millimeter-wave over fiber with directly modulated dual-mode laser diode. Sci. Rep. 6(1), 1–12 (2016). https://doi.org/10.1038/srep27919

    Article  Google Scholar 

  29. M. Sung, S.H. Cho, J. Kim, J.K. Lee, J.H. Lee, H.S. Chung, Demonstration of IFoF-based mobile fronthaul in 5G prototype with 28-GHz millimeter wave. J. Lightwave Technol. 36(2), 601–609 (2018). https://doi.org/10.1109/JLT.2017.2763156

    Article  Google Scholar 

  30. T.R. Raddo, S. Rommel, B. Cimoli, I.T. Monroy, The optical fiber and mmwave wireless convergence for 5G fronthaul networks, in IEEE 5G World Forum, 5GWF 2019 – Conference Proceedings, no. 2019 (2019), pp 607–612. https://doi.org/10.1109/5GWF.2019.8911613

  31. Z. Li et al., Symmetric 40-Gb / s , 100-km Passive Reach with 53-dB Loss Budget. J. Lightwave Technol. 32(21), 3389–3396 (2014)

    Google Scholar 

  32. H. Song, B. Kim, B. Mukherjee, Long-reach optical access networks: a survey of bandwidth assignment mechanisms. Communications 12(1), 112–123 (2010)

    Google Scholar 

  33. J. Xiao et al., Review on the millimeter-wave generation techniques based on photon assisted for the RoF network system. Adv. Condens. Matter Phys. 2020 (2020). https://doi.org/10.1155/2020/6692941

  34. A.L. Balan, N.D. Alexandru, Inter-symbol interference free pulses for transmission over intensity-modulated channels. IEEE Int. Conf. Commun., 4–7 (2014). https://doi.org/10.1109/ICComm.2014.6866679

  35. G.H. Nguyen, Y. Le Guennec, Generation of 60-GHz MB-OFDM signal-over-fiber by up-conversion using cascaded. Lightwave 27(11), 1496–1502 (2009)

    Article  Google Scholar 

  36. Up-Down Converter and Mixers _ Authorized Distributor _ Arrow.

    Google Scholar 

  37. K.I. Kitayama, R.A. Griffin, Optical downconversion from millimeter-wave to IF-band over 50-km-long optical fiber link using an electroabsorption modulator. IEEE Photon. Technol. Lett. 11(2), 287–289 (1999). https://doi.org/10.1109/68.740732

    Article  Google Scholar 

  38. X. Feng, P. Yang, L. He, F. Niu, B. Zhong, H. Xu, Heterodyne system for measuring frequency response of photodetectors in ultrasonic applications. IEEE Photon. Technol. Lett. 28(12), 1360–1362 (2016). https://doi.org/10.1109/LPT.2016.2542839

    Article  Google Scholar 

  39. D. Singh, P. Singh, Techniques of millimeter-wave signal generation in ROF systems: a review. Int. J. Comput. Appl. Inf. Technol. I, Issue II I(II), 2278–7720 (2012) [Online]. Available: www.ijcait.com

    Google Scholar 

  40. A. Kumar, A. Sharma, A 5x16 Gbps DWDM system for ground-to-satellite using RZ signaling scheme under different turbulences. Proc. Comput. Sci. 115, 115–122 (2017). https://doi.org/10.1016/j.procs.2017.09.084

    Article  Google Scholar 

  41. S. Singh, Bandwidth efficient hybrid modulation technique in the scenario of 3.5 Tb/S dense wavelength division multiplexed system. Optoelectron. Adv. Mater. Rapid Commun. 11(1–2), 51–53 (2017)

    Google Scholar 

  42. S. Parkash, A. Sharma, H. Singh, H.P. Singh, Performance investigation of 40 GB/s DWDM over free space optical communication system using RZ modulation format. Adv. Opt. Technol. 2016 (2016). https://doi.org/10.1155/2016/4217302

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, H., Singh, S., Kaur, R. (2022). Fronthauling for 5G and Beyond. In: Singh, S., Kaur, G., Islam, M.T., Kaler, R. (eds) Broadband Connectivity in 5G and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-031-06866-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06866-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06865-2

  • Online ISBN: 978-3-031-06866-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics