Skip to main content

Coexistence of Next-Generation Passive Optical Network Stage 2 and 5G Fronthaul Network

  • Chapter
  • First Online:
Broadband Connectivity in 5G and Beyond

Abstract

Mobile wireless communication has seen tremendous growth over the years. The user experience with the communication systems has been improved through the progression of mobile generations. The fifth-generation (5G) cellular technology is similar to the fourth-generation long-term evolution (4G LTE) systems with advanced features. 5G networks impose stringent requirements on the fronthaul segment such as high data rates, large bandwidth, and low latency rates. The infrastructure requirements for the widespread deployment of the 5G networks are huge. It is beneficial to use the already existing fiber-based networks, which are widely deployed. The NGPON2 is the successor to the GPON and XG-PON networks. The infrastructure of the NGPON can be utilized for the coexisting 5G deployment. This concept can reduce the deployment cost as well as the time. The service providers are looking for fiber-based solutions for the 5G deployment. In this chapter, the various passive optical network technologies have been reviewed. After a thorough literature review, the design architecture of the NGPON-2 capable of supporting coexisting 5G fronthaul has been explained. The performance evaluation of the system is carried out, and acceptable BER levels justify the coexistence concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.S. Wey, J. Zhang, Passive optical networks for 5G transport: Technology and standards. J. Lightw. Technol. 37(12), 2830–2837 (2019). https://doi.org/10.1109/JLT.2018.2856828

    Article  Google Scholar 

  2. Y. Jiang, X. Yang, Research on the model of 5G front-haul network, in 2019 IEEE 11th International Conference on Advanced Infocomm Technology, ICAIT 2019, (2019), pp. 101–104. https://doi.org/10.1109/ICAIT.2019.8935917

    Chapter  Google Scholar 

  3. S. Weinstein, Y. Luo, T. Wang, PON architecture and components, in The Comsoc Guide to Passive Optical Networks, (2012), pp. 27–51. https://doi.org/10.1002/9781118250549.ch2

    Chapter  Google Scholar 

  4. M.A. Romero, Passive optical networks: Present status and future outlook, in SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, IMOC 2017, vol. 2017, (2017), pp. 1–5. https://doi.org/10.1109/IMOC.2017.8121159

    Chapter  Google Scholar 

  5. S.S. Al-Falit, Fiber to the Home (FTTH) Networks Based on OCDM Technique (The Islamic University, 2015)

    Google Scholar 

  6. T. Horvath, P. Munster, N.H. Bao, Lasers in passive optical networks and the activation process of an end unit: A tutorial. Electronics 9(7), 1–18 (2020). https://doi.org/10.3390/electronics9071114

    Article  Google Scholar 

  7. G. Kramer, G. Pesavento, Ethernet passive optical network (EPON): Building a next-generation optical access network. IEEE Commun. Mag. 40(2), 66–73 (2002). https://doi.org/10.1109/35.983910

    Article  Google Scholar 

  8. I. Cale, A. Salihovic, M. Ivekovic, Gigabit passive optical network – GPON, in Proceedings of International Conference Information Technology Interfaces. ITI, (2007), pp. 679–684. https://doi.org/10.1109/ITI.2007.4283853

    Chapter  Google Scholar 

  9. M. Kumari, R. Sharma, A. Sheetal, Passive optical network evolution to next generation passive optical network: A review, in 2018 6th Edition of International Conference on Wireless Networks and Embedded Systems, WECON 2018 – Proceedings, (2018), pp. 102–107. https://doi.org/10.1109/WECON.2018.8782066

    Chapter  Google Scholar 

  10. M. Zhu et al., Wavelength resource sharing in bidirectional optical mobile fronthaul. J. Lightw. Technol. 33(15), 3182–3188 (2015). https://doi.org/10.1109/JLT.2015.2428226

    Article  Google Scholar 

  11. Y. Luo, M. Sui, F. Effenberger, Wavelength management in time and wavelength division multiplexed passive optical networks (TWDM-PONs), in GLOBECOM – IEEE Global Communications Conference, vol. 2, (2012), pp. 2971–2976. https://doi.org/10.1109/GLOCOM.2012.6503569

    Chapter  Google Scholar 

  12. W. Shbair, F. El Nahal, Coherent passive optical network technology for 5G, in IEEE 7th Palestinian International Conference on Electrical and Computer Engineering. PICECE 2019, vol. 2019, pp. 6–9. https://doi.org/10.1109/PICECE.2019.8747183

  13. M. Waqar, A. Kim, P.K. Cho, A study of fronthaul networks in crans-requirements and recent advancements. KSII Trans. Internet Inf. Syst. 12(10), 4618–4639 (2018). https://doi.org/10.3837/tiis.2018.10.001

    Article  Google Scholar 

  14. S. Zhou, X. Liu, F. Effenberger, J. Chao, Low-latency high-efficiency mobile fronthaul with TDM-PON (mobile-PON). J. Opt. Commun. Netw. 10(1), A20–A26 (2018). https://doi.org/10.1364/JOCN.10.000A20

    Article  Google Scholar 

  15. P. Chanclou et al., Optical fiber solution for mobile fronthaul to achieve cloud radio access network. 2013 Future Network & Mobile Summit, 2013

    Google Scholar 

  16. F. Ponzini, L. Giorgi, A. Bianchi, R. Sabella, Centralized radio access networks over wavelength-division multiplexing: A plug-and-play implementation. IEEE Commun. Mag. 51(9), 94–99 (2013). https://doi.org/10.1109/MCOM.2013.6588656

    Article  Google Scholar 

  17. J.H. Lee, S.H. Cho, K.H. Doo, S. Il Myong, J.H. Lee, S.S. Lee, CPRI transceiver for mobile front-haul based on wavelength division multiplexing, in International Conference on ICT Convergence, (2012), pp. 581–582. https://doi.org/10.1109/ICTC.2012.6387205

    Chapter  Google Scholar 

  18. B. Liu, X. Xin, L. Zhang, J. Yu, 10992-Gb/s WDM-OFDMA Uni-PON with dynamic resource allocation and variable rate access. Opt. Express 20(10), 10552 (2012). https://doi.org/10.1364/oe.20.010552

    Article  Google Scholar 

  19. Z. Ghebretensae et al., Transmission solutions and architectures for heterogeneous networks built as C-RANs, in 2012 7th International ICST Conference on Communications and Networking in China, CHINACOM 2012 – Proceedings, (2012), pp. 748–752. https://doi.org/10.1109/ChinaCom.2012.6417583

    Chapter  Google Scholar 

  20. M. Morant, A. Macho, R. Llorente, On the suitability of multicore fiber for LTE-advanced MIMO optical fronthaul systems. J. Lightw. Technol. 34(2), 676–682 (2016). https://doi.org/10.1109/JLT.2015.2507137

    Article  Google Scholar 

  21. L. Cheng, M. Zhu, M.M.U. Gul, X. Ma, G.K. Chang, Adaptive photonics-aided coordinated multipoint transmissions for next-generation mobile fronthaul. J. Lightw. Technol. 32(10), 1907–1914 (2014). https://doi.org/10.1109/JLT.2014.2316090

    Article  Google Scholar 

  22. D. Zhang, D. Zhe, M. Jiang, J. Zhang, High speed WDM-PON technology for 5G fronthaul network, in Asia Communications and Photonics Conference. ACP, vol. 2018, (2018), pp. 1–3. https://doi.org/10.1109/ACP.2018.8596261

    Chapter  Google Scholar 

  23. C. Desanti, L. Du, J. Guarin, J. Bone, C.F. Lam, Super-PON: An evolution for access networks [invited]. J. Opt. Commun. Netw. 12(10), D66–D77 (2020). https://doi.org/10.1364/JOCN.391846

    Article  Google Scholar 

  24. S. Bidkar, R. Bonk, T. Pfeiffer, Low-latency TDM-PON for 5G xhaul. Int. Conf. Transpar. Opt. Netw. 2020, 25–28 (2020). https://doi.org/10.1109/ICTON51198.2020.9203123

    Article  Google Scholar 

  25. I.F. Akyildiz, S. Nie, S.C. Lin, M. Chandrasekaran, 5G roadmap: 10 key enabling technologies. Comput. Netw. 106, 17–48 (2016). https://doi.org/10.1016/j.comnet.2016.06.010

    Article  Google Scholar 

  26. F. Boccardi, R. Heath, A. Lozano, T.L. Marzetta, P. Popovski, Five disruptive technology directions for 5G. IEEE Commun. Mag. 52(2), 74–80 (2014). https://doi.org/10.1109/MCOM.2014.6736746

    Article  Google Scholar 

  27. E. Hossain, M. Hasan, IEEE instrumentation & measurement magazine 5G cellular: Key enabling technologies and research challenges. IEEE Instrum. Meas. Mag. 15(June), 11–21 (2015)

    Article  Google Scholar 

  28. X. Wang et al., Handover reduction in virtualized cloud radio access networks using TWDM-PON fronthaul. J. Opt. Commun. Netw. 8(12), B124–B134 (2016). https://doi.org/10.1364/JOCN.8.00B124

    Article  Google Scholar 

  29. E. Saia Lima, L.A.M. Pereira, R.M. Borges, A.C.S. Junior, 5G new radio photonically-amplified Xhaul. Opt. Fiber Technol. 60(June), 102358 (2020). https://doi.org/10.1016/j.yofte.2020.102358

    Article  Google Scholar 

  30. A. Tzanakaki, M.P. Anastasopoulos, D. Simeonidou, Converged optical, wireless, and data center network infrastructures for 5G services. J. Opt. Commun. Netw. 11(2), A111–A122 (2019). https://doi.org/10.1364/JOCN.11.00A111

    Article  Google Scholar 

  31. M. Waqar, A. Kim, J.J. Yoon, A performance analysis of 5G fronthaul networks for long-distance communications. IFIP Wirel. Days 2019(April), 1–4 (2019). https://doi.org/10.1109/WD.2019.8734202

    Article  Google Scholar 

  32. B. Skubic, M. Fiorani, S. Tombaz, A. Furuskar, J. Martensson, P. Monti, Optical transport solutions for 5G fixed wireless access [invited]. J. Opt. Commun. Netw. 9(9), D10–D18 (2017). https://doi.org/10.1364/JOCN.9.000D10

    Article  Google Scholar 

  33. B.R. Rayapati, N. Rangaswamy, Ring topologies with energy efficient scheduling of ONUs in TWDM PON, in Proceedings of the 2019 TEQIP – III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks, IMICPW 2019, (2019), pp. 255–259. https://doi.org/10.1109/IMICPW.2019.8933222

    Chapter  Google Scholar 

  34. A. Liu, X. Wang, Q. Shao, T. Song, H. Yin, N. Zhao, A Low Cost Structure of Radio-Over-Fiber System Compatible with WDM-PON (Lab of Optical Communications and Photonic Technology, School of Information and Communication Engineering, 2016), pp. 16–18

    Google Scholar 

  35. T. Salgals, A. Ostrovskis, A. Ipatovs, V. Bobrovs, S. Spolitis, Hybrid ARoF-WDM PON infrastructure for 5G millimeter-wave interface and broadband internet service, in 2019 Photonics & Electromagnetics Research Symposium – Fall, PIERS – Fall 2019 – Proceedings, (2019), pp. 2161–2168. https://doi.org/10.1109/PIERS-Fall48861.2019.9021479

    Chapter  Google Scholar 

  36. A. Gupta, R.K. Jha, A survey of 5G network: Architecture and emerging technologies. IEEE Access 3(C), 1206–1232 (2015). https://doi.org/10.1109/ACCESS.2015.2461602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajandeep Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Mahajan, R., Kaur, R. (2022). Coexistence of Next-Generation Passive Optical Network Stage 2 and 5G Fronthaul Network. In: Singh, S., Kaur, G., Islam, M.T., Kaler, R. (eds) Broadband Connectivity in 5G and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-031-06866-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06866-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06865-2

  • Online ISBN: 978-3-031-06866-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics