Skip to main content

Yankov Characteristic Formulas (An Algebraic Account)

  • Chapter
  • First Online:
V.A. Yankov on Non-Classical Logics, History and Philosophy of Mathematics

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 24))

  • 252 Accesses

Abstract

The Yankov (characteristic) formulas were introduced by V. Yankov in 1963. Nowadays, the Yankov (or frame) formulas are used in virtually every branch of propositional logic: intermediate, modal, fuzzy, relevant, many-valued, etc. All these different logics have one thing in common: in one form or the other, they admit the deduction theorem. From a standpoint of algebraic logic, this means that their corresponding varieties have a ternary deductive (TD) term. It is natural to extend the notion of a characteristic formula to such varieties and, thus, to apply this notion to an even broader class of logics, namely, the logics in which the algebraic semantic is a variety with a TD term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Troelstra (1965) the logics \(\boldsymbol{L}_1\) and \(\boldsymbol{L}_2\) are called independent just in case if they are incomparable, i.e. \(\boldsymbol{L}_1 \nsubseteq \boldsymbol{L}_2\) and \(\boldsymbol{L}_2 \nsubseteq \boldsymbol{L}_1\).

  2. 2.

    These algebras are due to Wroński (1974) and Blok (1977); in Jankov (1968a) the different algebras were employed.

References

  • Agliano, P. (1998). Ternary deduction terms in residuated structures. Acta Scientiarum Mathematicarum (Szeged), 64(3–4), 397–429.

    MathSciNet  MATH  Google Scholar 

  • Agliano, P. (2019). Varieties of BL-algebras III: Splitting algebras. Studia Logica.

    Google Scholar 

  • Bellissima, F. (1988). Finite and finitely separable intermediate propositional logics. Journal of Symbolic Logic, 53(2), 403–420. https://doi.org/10.2307/2274513.

  • Berman, J., & Blok, W. J. (2004). Free łukasiewicz and hoop residuation algebras. Studia Logica, 77(2), 153–180. https://doi.org/10.1023/B:STUD.0000037125.49866.50.

  • Bezhanishvili, N. (2004). De Jongh’s characterization of intuitionistic propositional calculus. Liber Amicorum Dick de Jongh (pp. 1–10). ILLC University of Amsterdam.

    Google Scholar 

  • Bezhanishvili, N. (2006). Lattices of intermediate and cylindric modal logics. Ph.D. thesis, Institute for Logic, Language and Computation University of Amsterdam.

    Google Scholar 

  • Blok, W. (1976). Varieties of interior algebras. Ph.D. thesis, University of Amsterdam.

    Google Scholar 

  • Blok, W. J. (1977). \(2^{\aleph _{0}}\) varieties of Heyting algebras not generated by their finite members. Algebra Universalis, 7(1), 115–117.

    Google Scholar 

  • Blok, W. J., & Pigozzi, D. (1982). On the structure of varieties with equationally definable principal congruences. I. Algebra Universalis, 15(2), 195–227. https://doi.org/10.1007/BF02483723.

  • Blok, W. J., & Pigozzi, D. (1994). On the structure of varieties with equationally definable principal congruences. III. Algebra Universalis, 32(4), 545–608. https://doi.org/10.1007/BF01195727.

  • Blok, W. J., & Raftery, J. G. (1997). Varieties of commutative residuated integral pomonoids and their residuation subreducts. Journal of Algebra, 190(2), 280–328. https://doi.org/10.1006/jabr.1996.6834.

  • Budkin, A. I., & Gorbunov, V. A. (1973). Implicative classes of algebras. Algebra i Logika, 12, 249–268, 363.

    Google Scholar 

  • Budkin, A. I., & Gorbunov, V. A. (1975). On the theory of quasivarieties of algebraic systems. Algebra i Logika, 14(2), 123–142, 240.

    Google Scholar 

  • Burris, S., & Sankappanavar, H. P. (1981). A course in universal algebra. Graduate Texts in Mathematics (Vol. 78). New York: Springer.

    Google Scholar 

  • Chagrov, A., & Zakharyaschev, M. (1995). On the independent axiomatizability of modal and intermediate logics. Journal of Logic and Computation, 5(3), 287–302. https://doi.org/10.1093/logcom/5.3.287.

  • Citkin, A. (1977). On admissible rules of intuitionistic propositional logic. Mathematics of the USSR-Sbornik, 31, 279–288 (A. Tsitkin).

    Google Scholar 

  • Citkin, A. (2012). Not every splitting Heyting or interior algebra is finitely presentable. Studia Logica, 100(1–2), 115–135. https://doi.org/10.1007/s11225-012-9391-1.

  • Citkin, A. (2013). Characteristic formulas of partial Heyting algebras. Logica Universalis, 7(2), 167–193. https://doi.org/10.1007/s11787-012-0048-7.

  • Citkin, A. (2018). Characteristic formulas over intermediate logics. Larisa Maksimova on implication, interpolation, and definability. Outstanding contributions to logic (Vol. 15, pp. 71–98). Cham: Springer.

    Google Scholar 

  • Citkin, A. I. (1986). Finite axiomatizability of locally tabular superintuitionistic logics. Matematicheskie Zametki, 40(3), 407–413, 430.

    Google Scholar 

  • Day, A. (1973). Splitting algebras and a weak notion of projectivity. In Proceedings of the University of Houston Lattice Theory Conference (Houston, Tex., 1973) (pp. 466–485), Department of Mathematics, University of Houston, Houston, Tex.

    Google Scholar 

  • Fine, K. (1974). An ascending chain of S4 logics. Theoria, 40(2), 110–116.

    Article  MathSciNet  MATH  Google Scholar 

  • Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated lattices: An algebraic glimpse at substructural logics. Studies in logic and the foundations of mathematics (Vol. 151). Amsterdam: Elsevier B. V.

    Google Scholar 

  • Gorbunov, V. A. (1998). Algebraic theory of quasivarieties. Siberian School of Algebra and Logic, Consultants Bureau, New York, translated from the Russian.

    Google Scholar 

  • Grätzer, G. (2008). Universal algebra (2nd ed.). New York: Springer. https://doi.org/10.1007/978-0-387-77487-9, with appendices by Grätzer, Bjarni Jónsson, Walter Taylor, Robert W. Quackenbush, Günter H. Wenzel, and Grätzer and W. A. Lampe.

  • Grätzer, G., & Quackenbush, R. W. (2010). Positive universal classes in locally finite varieties. Algebra Universalis, 64(1–2), 1–13. https://doi.org/10.1007/s00012-010-0089-9010-0089-9.

  • Hosoi, T. (1967). On intermediate logics. I. Journal of the Faculty of Science, University of Tokyo, Section I, 14, 293–312.

    MathSciNet  MATH  Google Scholar 

  • Idziak, K., & Idziak, P. (1988). Decidability problem for finite Heyting algebras. Journal of Symbolic Logic, 53(3), 729–735. https://doi.org/10.2307/2274568.

  • Jankov, V. A. (1963a). On certain superconstructive propositional calculi. Doklady Akademii Nauk SSSR, 151, 796–798, English translation in Soviet Mathematics - Doklady, 4, 1103–1105.

    Google Scholar 

  • Jankov, V. A. (1963b). On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures. Doklady Akademii Nauk SSSR, 151, 1293–1294, English translation in Soviet Mathematics - Doklady, 4, 1203–1204.

    Google Scholar 

  • Jankov, V. A. (1968a). The construction of a sequence of strongly independent superintuitionistic propositional calculi. Doklady Akademii Nauk SSSR, 181, 33–34, English translation in Soviet Mathematics - Doklady, 9, 806–807.

    Google Scholar 

  • Jankov, V. A. (1968b). On an extension of the intuitionistic propositional calculus to the classical one and of the minimal one to the intuitionistic one. Izvestiya Akademii Nauk SSSR Series Mathematica, 32, 208–211, English translation in Mathematics of the USSR-Izvestiya, 2(1), 205–208.

    Google Scholar 

  • Jankov, V. A. (1969). Conjunctively irresolvable formulae in propositional calculi. Izvestiya Akademii Nauk SSSR Series Mathematica, 33, 18–38, English translation in Mathematics of the USSR-Izvestiya, 3(1), 17–35.

    Google Scholar 

  • de Jongh, D. (1968). Investigations on intuitionistic propositional calculus. Ph.D. thesis, University of Wisconsin.

    Google Scholar 

  • Jongh, D. D., & Yang, F. (2010). Jankov’s theorems for intermediate logics in the settings of universal models. ILLC publication series (Vol. PP-2010-07). Amsterdam: Institute for Logic, Language and Computation, University of Amsterdam.

    Google Scholar 

  • Jónsson, B. (1967). Algebras whose congruence lattices are distributive. Mathematica Scandinavica, 21, 110–121.

    Google Scholar 

  • Kracht, M. (1999). Tools and techniques in modal logic. Studies in logic and the foundations of mathematics (Vol. 142). Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Kuznetsov, A. V. (1973). On finitely generated pseudo-Boolean algebras and finitely approximable varieties. In Proceedings of the 12th USSR Algebraic Colloquium, Sverdlovsk (p. 281) (in Russian).

    Google Scholar 

  • Maksimova, L. L., Skvorcov, D. P., & Šehtman, V. B. (1979). Impossibility of finite axiomatization of Medvedev’s logic of finite problems. Doklady Akademii Nauk SSSR, 245(5), 1051–1054.

    Google Scholar 

  • Mal’cev, A. (1973). Algebraic systems. Die Grundlehren der mathematischen Wissenschaften (Vol. 192). Berlin: Springer, Akademie-Verlag. XII, 317 p.

    Google Scholar 

  • Mardaev, S. I. (1987). Embedding of implicative lattices and superintuitionistic logics. Algebra i Logika, 26(3), 318–357, 399.

    Google Scholar 

  • McKenzie, R. (1972). Equational bases and nonmodular lattice varieties. Transactions of the American Mathematical Society, 174, 1–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Odintsov, S. P. (2005). On the structure of paraconsistent extensions of Johansson’s logic. Journal of Applied Logic, 3(1), 43–65. https://doi.org/10.1016/j.jal.2004.07.011.

  • Odintsov, S. P. (2006). The lattice of extensions of minimal logic. Matematicheskije Trudy, 9(2), 60–108.

    MathSciNet  MATH  Google Scholar 

  • Rautenberg, W. (1979). Klassische und nichtklassische Aussagenlogik. Logik und Grundlagen der Mathematik [Logic and foundations of mathematics] (Vol. 22). Braunschweig: Friedr. Vieweg & Sohn.

    Google Scholar 

  • Rautenberg, W. (1980). Splitting lattices of logics. Archiv für Mathematische Logik und Grundlagenforschung, 20(3–4), 155–159. https://doi.org/10.1007/BF02021134.

  • Rybakov, V. V. (1997a). Admissibility of logical inference rules. Studies in logic and the foundations of mathematics (Vol. 136). Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Rybakov, V. V. (1997b). Quasi-characteristic inference rules for modal logics. In Logical foundations of computer science (Yaroslavl, 1997). Lecture notes in computer science (Vol. 1234, pp. 333–341). Berlin: Springer.

    Google Scholar 

  • Skvortsov, D. (1999). Remark on a finite axiomatization of finite intermediate propositional logics. Journal of Applied Non-classical Logics, 9(2–3), 381–386. https://doi.org/10.1080/11663081.1999.10510973, issue in memory of George Gargov.

  • Spinks, M., & Veroff, R. (2007). Characterisations of Nelson algebras. Revista de la Unión Matemática Argentina, 48(1), 27–39.

    MathSciNet  MATH  Google Scholar 

  • Tanaka, Y. (2007). An infinitary extension of Jankov’s theorem. Studia Logica, 86(1), 111–131. https://doi.org/10.1007/s11225-007-9048-7.

  • Tomaszewski, E. (2002). An algorithm for finding finite axiomatizations of finite intermediate logics by means of Jankov formulas. Bulletin of the Section of Logic University of Łódź, 31(1), 1–6.

    Google Scholar 

  • Tomaszewski, E. (2003). On sufficiently rich sets of formulas. Ph.D. thesis, Institute of Philosophy, Jagiellonian University, Krakov.

    Google Scholar 

  • Troelstra, A. S. (1965). On intermediate propositional logics. Nederlandse Akademie van Wetenschappen Proceedings Series A 68=Indagationes Mathematicae, 27, 141–152.

    Google Scholar 

  • Umezawa, T. (1959). On intermediate many-valued logics. Journal of the Mathematical Society of Japan, 11, 116–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Wolter, F. (1993). Lattices of modal logics. Ph.D. thesis, Freien Universität Berlin.

    Google Scholar 

  • Wolter, F. (1996). Tense logic without tense operators. Mathematical Logic Quarterly, 42(2), 145–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Wroński, A. (1974). On cardinality of matrices strongly adequate for the intuitionistic propositional logic. Polish Academy of Sciences, Institute of Philosophy and Sociology, Bulletin of the Section of Logic, 3(1), 34–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Citkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Citkin, A. (2022). Yankov Characteristic Formulas (An Algebraic Account). In: Citkin, A., Vandoulakis, I.M. (eds) V.A. Yankov on Non-Classical Logics, History and Philosophy of Mathematics. Outstanding Contributions to Logic, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-06843-0_5

Download citation

Publish with us

Policies and ethics