Skip to main content

Dam Break-Induced Urban Flood Propagation Modelling with DualSPHysics: A Validation Case Study

  • Conference paper
  • First Online:
New Metropolitan Perspectives (NMP 2022)

Abstract

Sustainable, safe and healthy growth of urban areas is currently achieved by a series of measures and initiatives, including the planning, management and mitigation of natural and anthropic possible hazards. Among potential menaces, extreme precipitation events of short duration, inducing severe urban flooding, may pose a significant threat for residents, especially if no counter-measures are planned to tackle with. Urban development, if not integrated with flooding mitigation strategies, generally goes with an increase of the impermeable surface, yielding a decreasing of infiltration and water evaporation as a result, and ultimately an increase of runoff peaks and a decrease of concentration times. These kinds of phenomena tend to worsen due to the ongoing climate change. In this framework, the sudden release of water through a simplified scaled urban configuration, following an abrupt dam breaching, is here numerically investigated. The open-source Lagrangian-based DualSPHysics solver was used for this aim. The aligned square city layout of 5 x 5 buildings case of Soares-Frazão and Zech (2008) was adopted as a validation case study. DualSPHysics post-processed free surface vertical profiles were compared with data recorded at 17 water-level gauges and numerical results of a finite-volume shallow water scheme, showing a reasonable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cornwall, W.: Europe’s deadly floods leave scientists stunned despite improvements, flood forecasts sometimes failed to flag risks along smaller streams. Science 373(6553), 372–373 (2021). https://doi.org/10.1126/science.373.6553.372

    Article  Google Scholar 

  2. Blöschl, G., et al.: Changing climate both increases and decreases European river floods. Nature 573(7772), 108–111 (2019). https://doi.org/10.1038/s41586-019-1495-6

    Article  Google Scholar 

  3. World Bank: Poverty and Shared Prosperity 2020: Reversals of Fortune. Washington, DC (2020). https://doi.org/10.1596/978-1-4648-1602-4

  4. Rözer, V., et al.: Impact-based forecasting for pluvial floods. Earth's Future 9(2), 2020EF001851 (2021). Doi: https://doi.org/10.1029/2020EF001851

  5. Stoppiello, M.G., Lofrano, G., Carotenuto, M., Viccione, G., Guarnaccia, C., Cascini, L.: A comparative assessment of analytical fate and transport models of organic contaminants in unsaturated soils. Sustainability 12, 1–24, 2949 (2020). Doi: https://doi.org/10.3390/su12072949

  6. Bian, G., Wang, G., Chen, J., Zhang, J., Song, M.: Spatial and seasonal variations of hydrological responses to climate and land-use changes in a highly urbanized basin of Southeastern China. Hydrol. Res. 52(2), 506–522 (2021). https://doi.org/10.2166/nh.2021.087

    Article  Google Scholar 

  7. Wu, J., Wu, Z.-Y., Lin, H.-J., Ji, H.-P., Liu, M.: Hydrological response to climate change and human activities: a case study of Taihu Basin China. Water Sci. Eng. 13(2), 83–94 (2020). https://doi.org/10.1016/j.wse.2020.06.006

    Article  Google Scholar 

  8. Gao, Y., Chen, J., Luo, H., Wang, H.: Prediction of hydrological responses to land use change. Sci. Total Environ. 708, 134998 (2020). https://doi.org/10.1016/j.scitotenv.2019.134998

    Article  Google Scholar 

  9. Sarchani, S., Awol, F.S., Tsanis, I.: Hydrological analysis of extreme rain events in a medium-sized basin. Appl. Sci. (Switzerland) 11(11), 4901 (2021). https://doi.org/10.3390/app11114901

    Article  Google Scholar 

  10. Wang, Y., et al.: Quantifying the response of potential flooding risk to urban growth in Beijing. Sci. Total Environ. 705, 135868 (2020). https://doi.org/10.1016/j.scitotenv.2019.135868

    Article  Google Scholar 

  11. Fekete, A., Sandholz, S.: Here comes the flood, but not failure? Lessons to learn after the heavy rain and pluvial floods in Germany 2021. Water (Switzerland) 13(21), 3016 (2021). https://doi.org/10.3390/w13213016

    Article  Google Scholar 

  12. Francipane, A., Pumo, D., Sinagra, M., La Loggia, G., Noto, L.V.: A paradigm of extreme rainfall pluvial floods in complex urban areas: The flood event of 15 July 2020 in Palermo (Italy). Nat. Hazard. 21(8), 2563–2580 (2021). https://doi.org/10.5194/nhess-21-2563-2021

    Article  Google Scholar 

  13. Arrighi, C., Castelli, F.: The 2017 flash flood of Livorno (Italy): lessons learnt from an exceptional hydrologic event. In: Fernandes, F., Malheiro, A., Chaminé, H.I. (eds.) Advances in Natural Hazards and Hydrological Risks: Meeting the Challenge. ASTI, pp. 117–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34397-2_23

    Chapter  Google Scholar 

  14. Magliocchetti, M., Adinolfi, V., Viccione, G., Grimaldi, M., Fasolino, I.: Small rivers and landscape NBS to mitigate flood risk. Sustainable Mediterranean Construction (Special Issue 5), 32–36 (2021). ISSN 2385–1546

    Google Scholar 

  15. Hobbie, S.E., Grimm, N.B.: Nature-based approaches to managing climate change impacts in cities. Philos. Trans. Roy. Soc. B: Biol. Sci. 375(1794), 20190124 (2020). https://doi.org/10.1098/rstb.2019.0124

    Article  Google Scholar 

  16. Ourloglou, O., Stefanidis, K., Dimitriou, E.: Assessing nature-based and classical engineering solutions for flood-risk reduction in urban streams. J. Ecol. Eng. 21(2), 46–56 (2021). https://doi.org/10.12911/22998993/116349

    Article  Google Scholar 

  17. Schiavo, V., Fasolino, I., Viccione, G. An ecosystem services-based model for the definition of decision support scenarios for urban flood hazard mitigation: a case study. Sustainability (Switzerland). Under review

    Google Scholar 

  18. Viccione, G., Nesticò, A., Vernieri, F., Cimmino, M.: A pilot plant for energy harvesting from falling water in drainpipes. technical and economic analysis. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11624, pp. 233–242. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24311-1_16

    Chapter  Google Scholar 

  19. Longobardi, A., D’Ambrosio, R., Mobilia, M.: Predicting stormwater retention capacity of green roofs: an experimental study of the roles of climate, substrate soil moisture, and drainage layer properties. Sustainability (Switzerland) 11(24), 6956 (2019). https://doi.org/10.3390/su11246956

    Article  Google Scholar 

  20. Osheen, M., Singh, K.K.: Rain garden—a solution to urban flooding: a review. In: Agnihotri, A., Reddy, K., Bansal, A. (eds.) Sustainable Engineering. Lecture Notes in Civil Engineering, vol. 30, pp. 27–35. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6717-5_4

  21. Hernández-Crespo, C., Fernández-Gonzalvo, M., Martín, M., Andrés-Doménech, I.: Influence of rainfall intensity and pollution build-up levels on water quality and quantity response of permeable pavements. Sci. Total Environ. 684, 303–313 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.271

    Article  Google Scholar 

  22. Pugliese Carratelli, E., Viccione, G., Bovolin, V.: Free surface flow impact on a vertical wall: a numerical assessment. Theoret. Comput. Fluid Dyn. 30(5), 403–414 (2016). https://doi.org/10.1007/s00162-016-0386-9

    Article  Google Scholar 

  23. Viccione, G., Bovolin, V., Carratelli, E.P.: A numerical investigation of liquid impact on planar surfaces. In: ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, vol. 1, pp. 627–637 (2016). https://doi.org/10.7712/100016.1842.10842

  24. Viccione, G., Bovolin, V., Carratelli, E.P.: Simulating fluid-structure interaction with SPH. AIP Conf. Proc 1479(1), 209–212 (2012). https://doi.org/10.1063/1.4756099

    Article  MATH  Google Scholar 

  25. Viccione, G., Bovolin, V.: Simulating triggering and evolution of debris-flows with SPH. In: International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, pp. 523–532 (2011). https://doi.org/10.4408/IJEGE.2011-03.B-058

  26. Kocaman, S., Evangelista, S., Guzel, H., Dal, K., Yilmaz, A., Viccione, G.: Experimental and numerical investigation of 3d dam-break wave propagation in an enclosed domain with dry and wet bottom. Appl. Sci. (Switzerland) 11(12), 5638 (2021). https://doi.org/10.3390/app11125638

    Article  Google Scholar 

  27. Kocaman, S., Güzel, H., Evangelista, S., Ozmen-Cagatay, H., Viccione, G.: Experimental and numerical analysis of a dam-break flow through different contraction geometries of the channel. Water (Switzerland) 12(4), 1124 (2020). https://doi.org/10.3390/W12041124

    Article  Google Scholar 

  28. Amicarelli, A., et al.: SPHERA v.9.0.0: A Computational Fluid Dynamics research code, based on the Smoothed Particle Hydrodynamics mesh-less method. Comput. Phys. Commun. 250, 107157 (2020). https://doi.org/10.1016/j.cpc.2020.107157

  29. Viccione, G., Izzo, C.: Three-dimensional CFD modelling of urban flood forces on buildings: a case study. J. Phys. Conf. Ser. 2162, 012020 (2022). https://doi.org/10.1088/1742-6596/2162/1/012020

    Article  Google Scholar 

  30. Domínguez, J.M., et al.: DualSPHysics: from fluid dynamics to multiphysics problems Comput. Particle Mech. (2021). https://doi.org/10.1007/s40571-021-00404-2

  31. Vacondio, R., et al.: Grand challenges for Smoothed Particle Hydrodynamics numerical schemes. Comput. Particle Mech. 8(3), 575–588 (2020). https://doi.org/10.1007/s40571-020-00354-1

    Article  Google Scholar 

  32. De Padova, D., Ben Meftah, M., De Serio, F., Mossa, M., Sibilla, S.: Characteristics of breaking vorticity in spilling and plunging waves investigated numerically by SPH. Environ. Fluid Mech. 20(2), 233–260 (2019). https://doi.org/10.1007/s10652-019-09699-5

    Article  Google Scholar 

  33. Tagliafierro, B., et al.: A new open source solver for modelling fluid-structure interaction: case study of a point-absorber wave energy converter with a power take-off unit. In: Proceedings of the 11th International Conference on Structural Dynamics, Athens, Greece, 23–26 November 2020, pp. 656-668 (2020), ID 165382. ISSN: 23119020

    Google Scholar 

  34. Crespo, A.J., et al.: SPH modelling of extreme loads exerted onto a point absorber WEC. In: Developments in Renewable Energies Offshore - Proceedings the 4th International Conference on Renewable Energies Offshore, RENEW 2020, 206-213, 172350 (2021). https://doi.org/10.1201/9781003134572-25

  35. Ropero-Giralda, P., et al.: Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics. Renewable Energy 162, 1763–1776 (2020). https://doi.org/10.1016/j.renene.2020.10.012

    Article  Google Scholar 

  36. Ropero-Giralda, P., et al.: Modelling a heaving point-absorber with a closed-loop control system using the DualSPHysics Code. Energies 14, 760 (2021). https://doi.org/10.3390/en14030760

    Article  Google Scholar 

  37. Altomare, C., Tagliafierro, B., Dominguez, J.M., Suzuki, T., Viccione, G.: Improved relaxation zone method in SPH-based model for coastal engineering applications. Appl. Ocean Res. 81, 15–33 (2018). https://doi.org/10.1016/j.apor.2018.09.013

    Article  Google Scholar 

  38. O’Connor, J., Rogers, B.D.: A fluid–structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. J. Fluids Struct. 104, 103312 (2021). https://doi.org/10.1016/j.jfluidstructs.2021.103312

    Article  Google Scholar 

  39. Capasso, S., et al.: On the development of a novel approach for simulating elastic beams in dualsphysics with the use of the project Chrono library. In: COMPDYN Proceedings, 174550 (2021). ISSN: 26233347

    Google Scholar 

  40. Capasso, S., Tagliafierro, B., Martínez-Estévez, I., Domínguez J.M., Crespo A.J.C., Viccione, G.: A DEM approach for simulating flexible beam elements with the Project Chrono core module in DualSPHysics. Comput. Particle Mech. 1–17 (2022). https://doi.org/10.1007/s40571-021-00451-9

  41. Soares-Frazão, S., Zech, Y.: Dam-break flow through an idealised city. J. Hydraul. Res. 46(5), 648–658 (2008). https://doi.org/10.3826/jhr.2008.3164

    Article  Google Scholar 

  42. Capasso, S., et al.: A numerical validation of 3D experimental dam-break wave interaction with a sharp obstacle using DualSPHysics. Water (Switzerland) 13(15), 2133 (2021). https://doi.org/10.3390/w13152133

    Article  Google Scholar 

  43. English, A., et al.: Modified dynamic boundary conditions (mDBC) for general-purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems. Comput. Particle Mech. (2021). https://doi.org/10.1007/s40571-021-00403-3

  44. Crespo, A.J.C., Gómez-Gesteira, M., Dalrymple, R.A.: Boundary conditions generated by dynamic particles in SPH methods. Comput. Mater. Continua 5(3), 173–184 (2007). ISSN: 15462218

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Viccione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capasso, S., Tagliafierro, B., Viccione, G. (2022). Dam Break-Induced Urban Flood Propagation Modelling with DualSPHysics: A Validation Case Study. In: Calabrò, F., Della Spina, L., Piñeira Mantiñán, M.J. (eds) New Metropolitan Perspectives. NMP 2022. Lecture Notes in Networks and Systems, vol 482. Springer, Cham. https://doi.org/10.1007/978-3-031-06825-6_124

Download citation

Publish with us

Policies and ethics