Skip to main content

MRDA-Net: Multiscale Residual Dense Attention Network for Image Denoising

  • Conference paper
  • First Online:
Advances in Artificial Intelligence and Security (ICAIS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1586))

Included in the following conference series:

Abstract

Deep learning methods have become prevalent in image denoising. Existing deep-learning approaches can mainly be divided into two categories: encoder-decoder and high-resolution models, wherein high-resolution models have superior resolution capabilities in detail description and restoration. In this study, we propose a network, namely, multi-scale residual dense attention network, that takes advantage of the context and attention information of images. Specifically, a residual dilated dense module containing dilated dense convolutional layers is employed to enlarge the receptive field of the proposed network. Then, we train such module to learn multi-scale features of images. A feature aggregation module is sequentially designed with dual attention blocks, yielding multi-scale feature maps effectively. We aggregate the multi-scale maps by a concatenation operation. Finally, a simple convolutional layer is adopted to generate residual images. With the residual learning strategy, clean images are obtained implicitly. During the experiment tests, we firstly carry out ablation studies to demonstrate the function of each proposed module. Then, blind and non-blind denoising procedures are carried out. Additionally, the total parameters are considered for analyzing the complexity of the proposed network. Comprehensive experiments show our method is better than several selected state-of-the-art denoising ones by the measure of PSNR and SSIM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3155–3164 (2019)

    Google Scholar 

  2. Benesty, J., Chen, J., Huang, Y.: Study of the widely linear wiener filter for noise reduction. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 205–208. IEEE (2010)

    Google Scholar 

  3. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2012)

    Article  MathSciNet  Google Scholar 

  4. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2012)

    Article  MathSciNet  Google Scholar 

  5. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  6. Franzen, R.: Kodak lossless true color image suite (2013). http://r0k.us/grapics/kodak/

  7. Geng, T., Sun, G., Xu, Y., He, J.: Truncated nuclear norm minimization based group sparse representation for image restoration. SIAM J. Imaging Sci. 11(3), 1878–1897 (2018)

    Article  MathSciNet  Google Scholar 

  8. Gong, P., Liu, J., Lv, S.: Image denoising with GAN based model. J. Inf. Hiding Priv. Protect. 2(4), 155 (2020)

    Google Scholar 

  9. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

    Google Scholar 

  10. Guo, B., Song, K., Dong, H., Yan, Y., Tu, Z., Zhu, L.: Nernet: noise estimation and removal network for image denoising. J. Vis. Commun. Image Representation 71, 102851 (2020)

    Google Scholar 

  11. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1712–1722 (2019)

    Google Scholar 

  12. Guo, Y., Jia, X., Zhao, B., Chai, H., Huang, Y.: Multifeature extracting CNN with concatenation for image denoising. Sign. Process. Image Commun. 81, 115690 (2020)

    Google Scholar 

  13. Gurrola-Ramos, J., Dalmau, O., Alarcón, T.E.: A residual dense u-net neural network for image denoising. IEEE Access 9, 31742–31754 (2021)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hou, Y., Zhao, C., Yang, D., Cheng, Y.: Comments on image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 20(1), 268–270 (2010)

    Google Scholar 

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  18. Huang, T., Li, S., Jia, X., Lu, H., Liu, J.: Neighbor2neighbor: self-supervised denoising from single noisy images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14781–14790 (2021)

    Google Scholar 

  19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  20. Jin, K., Wang, S.: Image denoising based on the asymmetric gaussian mixture model. Internet of Things 2(1), 11 (2020)

    Google Scholar 

  21. Lecouat, B., Ponce, J., Mairal, J.: Fully trainable and interpretable non-local sparse models for image restoration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 238–254. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_15

  22. Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., Aila, T.: Noise2noise: Learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)

  23. Li, S., Zhao, J., Zhang, H., Bi, Z., Qu, S.: A non-local low-rank algorithm for sub-bottom profile sonar image denoising. Remote Sens. 12(14), 2336 (2020)

    Google Scholar 

  24. Li, X., Ye, C., Yan, Y., Du, Z.: Low-dose CTimage denoising based on improved WGAN-GP. J. New Media 1(2), 75 (2019)

    Google Scholar 

  25. Ma, K., et al.: Waterloo exploration database: new challenges for image quality assessment models. IEEE Trans. Image Process. 26(2), 1004–1016 (2016)

    Google Scholar 

  26. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. Adv. Neural Inf. Process. Syst. 29, 2802–2810 (2016)

    Google Scholar 

  27. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  28. Pitas, I., Venetsanopoulos, A.N.: Nonlinear digital filters: principles and applications, vol. 84. Springer Science & Business Media (2013)

    Google Scholar 

  29. Pleiss, G., Chen, D., Huang, G., Li, T., van der Maaten, L., Weinberger, K.Q.: Memory-efficient implementation of densenets. arXiv preprint arXiv:1707.06990 (2017)

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Song, Y., Zhu, Y., Du, X.: Dynamic residual dense network for image denoising. Sensors 19(17), 3809 (2019)

    Article  Google Scholar 

  32. Tang, Y., Chen, Y., Jiang, A., Li, J., Kwan, H.K.: Guided intra-patch smoothing graph filtering for single-image denoising. Comput. Mater. Continua 69(1), 67–80 (2021)

    Google Scholar 

  33. Tian, C., Xu, Y., Li, Z., Zuo, W., Fei, L., Liu, H.: Attention-guided CNN for image denoising. Neural Netw. 124, 117–129 (2020)

    Google Scholar 

  34. Tian, C., Xu, Y., Zuo, W., Du, B., Lin, C.W., Zhang, D.: Designing and training of a dual CNN for image denoising. Knowl.-Based Syst. 226, 106949 (2021)

    Google Scholar 

  35. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839–846. IEEE (1998)

    Google Scholar 

  36. Vinayagam, P., Anandan, P., Kumaratharan, N.: Image denoising using a nonlinear pixel-likeness weighted-frame technique. Intell. Autom. Soft Comput. 30(3), 869–879 (2021)

    Google Scholar 

  37. Wang, Y., Wang, G., Chen, C., Pan, Z.: Multi-scale dilated convolution of convolutional neural network for image denoising. Multimedia Tools Appl. 78(14), 19945–19960 (2019). https://doi.org/10.1007/s11042-019-7377-y

  38. Wang, Y., Song, X., Gong, G., Li, N.: A multi-scale feature extraction-based normalized attention neural network for image denoising. Electronics 10(3), 319 (2021)

    Google Scholar 

  39. Weizheng, X., Chenqi, X., Zhengru, J., Yueping, H.: Digital image denoising method based on mean filter. In: 2020 International Conference on Computer Engineering and Application (ICCEA), pp. 857–859. IEEE (2020)

    Google Scholar 

  40. Wen, B., Ravishankar, S., Bresler, Y.: Structured overcomplete sparsifying transform learning with convergence guarantees and applications. Int. J. Comput. Vis. 114(2), 137–167 (2015)

    Google Scholar 

  41. Xu, J., Zhang, L., Zhang, D.: A trilateral weighted sparse coding scheme for real-world image denoising. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36 (2018)

    Google Scholar 

  42. Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1096–1104 (2017)

    Google Scholar 

  43. Xu, J., Zhang, L., Zuo, W., Zhang, D., Feng, X.: Patch group based nonlocal self-similarity prior learning for image denoising. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 244–252 (2015)

    Google Scholar 

  44. Yang, R., Yin, L., Gabbouj, M., Astola, J., Neuvo, Y.: Optimal weighted median filtering under structural constraints. IEEE Trans. Sign. Process. 43(3), 591–604 (1995)

    Google Scholar 

  45. Zamir, S.W., et al.: Learning enriched features for real image restoration and enhancement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 492–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_30

  46. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14821–14831 (2021)

    Google Scholar 

  47. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Google Scholar 

  48. Zhang, K., Zuo, W., Zhang, L.: FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Proces. 27(9), 4608–4622 (2018)

    Google Scholar 

  49. Zhang, L., Wu, X., Buades, A., Li, X.: Color demosaicking by local directional interpolation and nonlocal adaptive thresholding. J. Electron. Imaging 20(2), 023016 (2011)

    Google Scholar 

  50. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 43(7), 2480–2495 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, J., Yao, C., Tang, Y., Gao, Y., Zhou, L., Hu, H. (2022). MRDA-Net: Multiscale Residual Dense Attention Network for Image Denoising. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Advances in Artificial Intelligence and Security. ICAIS 2022. Communications in Computer and Information Science, vol 1586. Springer, Cham. https://doi.org/10.1007/978-3-031-06767-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06767-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06766-2

  • Online ISBN: 978-3-031-06767-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics