Skip to main content

Amyotrophic Lateral Sclerosis: Neurochemical Biomarkers

  • Chapter
  • First Online:
Acquired Neuromuscular Disorders
  • 580 Accesses

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons, causing relentless paralysis. There is a need for ALS biomarkers in order to facilitate early and differential diagnosis and prediction of disease course. The most promising ALS biomarkers are neurofilaments (phosphorylated heavy chain [pNFH] and light chain [NFL]), for which increasing evidence probably warrants their introduction in the clinical scenario in the near future. Their levels are raised in the CSF of ALS patients as a consequence of release from degenerating motor neuron axons, therefore enabling differentiation from most other conditions. Neurofilaments also have prognostic value, predicting survival and correlating with disease progression rate. Thanks to technological advances, neurofilaments can now be measured also in the blood, providing information which is similar to that given by their CSF counterparts. As neurofilament levels are stable over time and blood sampling makes longitudinal measurements easy, they are particularly promising as pharmacodynamic biomarkers for trials of experimental therapeutics. Another class of ALS biomarkers is that of neuroinflammatory molecules, among which the chitinases, and particularly chitotriosidase (Chit1), have been most studied in the last years. Though significantly raised in the CSF in ALS, the diagnostic performance of Chit1 is actually lower than that of neurofilaments; its potential usefulness is rather due to the fact that it presumably reflects microglial inflammation occurring in the non-cell-autonomous neurodegenerative process, which, together with the longitudinal stability of CSF levels, would enable its use as a pharmacodynamic biomarker in future trials targeting neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. Lancet. 2017;390(10107):2084–98.

    Article  PubMed  Google Scholar 

  2. Ghasemi M, Brown RH Jr. Genetics of amyotrophic lateral sclerosis. Cold Spring Harb Perspect Med. 2018;8(5):a024125.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Burrell JR, Halliday GM, Kril JJ, et al. The frontotemporal dementia-motor neuron disease continuum. Lancet. 2016;388(10047):919–31.

    Article  PubMed  Google Scholar 

  4. Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3.

    Article  CAS  PubMed  Google Scholar 

  5. Brettschneider J, Del Tredici K, Toledo JB, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol. 2013;74(1):20–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K. Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol. 2013;9(12):708–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1(5):293–9.

    Article  CAS  PubMed  Google Scholar 

  8. Shefner JM, Al-Chalabi A, Baker MR, et al. A proposal for new diagnostic criteria for ALS. Clin Neurophysiol. 2020;131(8):1975–8.

    Article  PubMed  Google Scholar 

  9. Verde F, Silani V, Otto M. Neurochemical biomarkers in amyotrophic lateral sclerosis. Curr Opin Neurol. 2019;32(5):747–57.

    Article  CAS  PubMed  Google Scholar 

  10. Otto M, Bowser R, Turner M, et al. Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS. Amyotroph Lateral Scler. 2012;13(1):1–10.

    Article  PubMed  Google Scholar 

  11. Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol. 2017;9(4):a018309.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018;14(10):577–89.

    Article  CAS  PubMed  Google Scholar 

  13. Manetto V, Sternberger NH, Perry G, Sternberger LA, Gambetti P. Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1988;47(6):642–53.

    Article  CAS  PubMed  Google Scholar 

  14. Williamson TL, Bruijn LI, Zhu Q, et al. Absence of neurofilaments reduces the selective vulnerability of motor neurons and slows disease caused by a familial amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutant. Proc Natl Acad Sci U S A. 1998;95(16):9631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lobsiger CS, Garcia ML, Ward CM, Cleveland DW. Altered axonal architecture by removal of the heavily phosphorylated neurofilament tail domains strongly slows superoxide dismutase 1 mutant-mediated ALS. Proc Natl Acad Sci U S A. 2005;102(29):10351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steinacker P, Feneberg E, Weishaupt J, et al. Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry. 2016;87(1):12–20.

    PubMed  Google Scholar 

  17. Zucchi E, Bedin R, Fasano A, et al. Cerebrospinal fluid neurofilaments may discriminate upper motor neuron syndromes: a pilot study. Neurodegener Dis. 2018;18(5–6):255–61.

    Article  CAS  PubMed  Google Scholar 

  18. Verde F, Zaina G, Bodio C, et al. Cerebrospinal fluid phosphorylated neurofilament heavy chain and chitotriosidase in primary lateral sclerosis. J Neurol Neurosurg Psychiatry. 2021;92(2):221–23.

    Google Scholar 

  19. Feneberg E, Oeckl P, Steinacker P, et al. Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. Neurology. 2018;90(1):e22–30.

    Article  CAS  PubMed  Google Scholar 

  20. Poesen K, De Schaepdryver M, Stubendorff B, et al. Neurofilament markers for ALS correlate with extent of upper and lower motor neuron disease. Neurology. 2017;88(24):2302–9.

    Article  CAS  PubMed  Google Scholar 

  21. Forgrave LM, Ma M, Best JR, DeMarco ML. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Alzheimers Dement (Amst). 2019;11:730–43.

    Article  Google Scholar 

  22. De Schaepdryver M, Jeromin A, Gille B, et al. Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2018;89(4):367–73.

    Article  PubMed  Google Scholar 

  23. Falzone YM, Domi T, Agosta F, et al. Serum phosphorylated neurofilament heavy-chain levels reflect phenotypic heterogeneity and are an independent predictor of survival in motor neuron disease. J Neurol. 2020;267(8):2272–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gille B, De Schaepdryver M, Goossens J, et al. Serum neurofilament light chain levels as a marker of upper motor neuron degeneration in patients with amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol. 2019;45(3):291–304.

    Article  CAS  PubMed  Google Scholar 

  25. Verde F, Steinacker P, Weishaupt JH, et al. Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(2):157–64.

    Article  PubMed  Google Scholar 

  26. Benatar M, Zhang L, Wang L, et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology. 2020;95(1):e59–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaiani A, Martinelli I, Bello L, et al. Diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis: neurofilament light chain levels in definite subtypes of disease. JAMA Neurol. 2017;74(5):525–32.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Boylan KB, Glass JD, Crook JE, et al. Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2013;84(4):467–72.

    Article  PubMed  Google Scholar 

  29. Thouvenot E, Demattei C, Lehmann S, et al. Serum neurofilament light chain at time of diagnosis is an independent prognostic factor of survival in amyotrophic lateral sclerosis. Eur J Neurol. 2020;27(2):251–7.

    Article  CAS  PubMed  Google Scholar 

  30. Olsson B, Alberg L, Cullen NC, et al. NFL is a marker of treatment response in children with SMA treated with nusinersen. J Neurol. 2019;266(9):2129–36.

    Article  PubMed  PubMed Central  Google Scholar 

  31. McCampbell A, Cole T, Wegener AJ, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J Clin Invest. 2018;128(8):3558–67.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Abu-Rumeileh S, Vacchiano V, Zenesini C, et al. Diagnostic-prognostic value and electrophysiological correlates of CSF biomarkers of neurodegeneration and neuroinflammation in amyotrophic lateral sclerosis. J Neurol. 2020;267(6):1699–708.

    Article  CAS  PubMed  Google Scholar 

  33. Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology. 2006;66(6):852–6.

    Article  CAS  PubMed  Google Scholar 

  34. Schreiber S, Spotorno N, Schreiber F, et al. Significance of CSF NfL and tau in ALS. J Neurol. 2018;265(11):2633–45.

    Article  CAS  PubMed  Google Scholar 

  35. Menke RA, Gray E, Lu CH, et al. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol. 2015;2(7):748–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Steinacker P, Huss A, Mayer B, et al. Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: data from the German MND-net. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18(1–2):112–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lu CH, Macdonald-Wallis C, Gray E, et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology. 2015;84(22):2247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCombe PA, Pfluger C, Singh P, Lim CY, Airey C, Henderson RD. Serial measurements of phosphorylated neurofilament-heavy in the serum of subjects with amyotrophic lateral sclerosis. J Neurol Sci. 2015;353(1–2):122–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lu CH, Petzold A, Topping J, et al. Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: insights from a longitudinal study. J Neurol Neurosurg Psychiatry. 2015;86(5):565–73.

    Article  PubMed  Google Scholar 

  40. Fialova L, Svarcova J, Bartos A, et al. Cerebrospinal fluid and serum antibodies against neurofilaments in patients with amyotrophic lateral sclerosis. Eur J Neurol. 2010;17(4):562–6.

    Article  CAS  PubMed  Google Scholar 

  41. Puentes F, Topping J, Kuhle J, et al. Immune reactivity to neurofilament proteins in the clinical staging of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2014;85(3):274–8.

    Article  PubMed  Google Scholar 

  42. Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol. 2019;18(2):211–20.

    Article  CAS  PubMed  Google Scholar 

  43. Engelhardt JI, Tajti J, Appel SH. Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis. Arch Neurol. 1993;50(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  44. Henkel JS, Engelhardt JI, Siklos L, et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol. 2004;55(2):221–35.

    Article  CAS  PubMed  Google Scholar 

  45. Turner MR, Cagnin A, Turkheimer FE, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004;15(3):601–9.

    Article  CAS  PubMed  Google Scholar 

  46. O’Rourke JG, Bogdanik L, Yanez A, et al. C9orf72 is required for proper macrophage and microglial function in mice. Science. 2016;351(6279):1324–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ahmad L, Zhang SY, Casanova JL, Sancho-Shimizu V. Human TBK1: a gatekeeper of neuroinflammation. Trends Mol Med. 2016;22(6):511–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boillee S, Yamanaka K, Lobsiger CS, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006;312(5778):1389–92.

    Article  CAS  PubMed  Google Scholar 

  49. Liao B, Zhao W, Beers DR, Henkel JS, Appel SH. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol. 2012;237(1):147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007;10(5):615–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mitchell RM, Freeman WM, Randazzo WT, et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology. 2009;72(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  52. Baron P, Bussini S, Cardin V, et al. Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle Nerve. 2005;32(4):541–4.

    Article  CAS  PubMed  Google Scholar 

  53. Kuhle J, Lindberg RL, Regeniter A, et al. Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol. 2009;16(6):771–4.

    Article  CAS  PubMed  Google Scholar 

  54. Moreno-Martinez L, Calvo AC, Munoz MJ, Osta R. Are circulating cytokines reliable biomarkers for amyotrophic lateral sclerosis? Int J Mol Sci. 2019;20(11):2759.

    Article  CAS  PubMed Central  Google Scholar 

  55. Steinacker P, Verde F, Fang L, et al. Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. J Neurol Neurosurg Psychiatry. 2018;89(3):239–47.

    Article  PubMed  Google Scholar 

  56. Rathore AS, Gupta RD. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015;2015:791907.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chang D, Sharma L, Dela Cruz CS. Chitotriosidase: a marker and modulator of lung disease. Eur Respir Rev. 2020;29(156):190143.

    Article  PubMed  Google Scholar 

  58. Boot RG, Renkema GH, Verhoek M, et al. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998;273(40):25680–5.

    Article  CAS  PubMed  Google Scholar 

  59. Hollak CE, van Weely S, van Oers MH, Aerts JM. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93(3):1288–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bargagli E, Bennett D, Maggiorelli C, et al. Human chitotriosidase: a sensitive biomarker of sarcoidosis. J Clin Immunol. 2013;33(1):264–70.

    Article  CAS  PubMed  Google Scholar 

  61. Mattsson N, Tabatabaei S, Johansson P, et al. Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility. Neuromolecular Med. 2011;13(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  62. Varghese AM, Sharma A, Mishra P, et al. Chitotriosidase—a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin Proteomics. 2013;10(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pagliardini V, Pagliardini S, Corrado L, et al. Chitotriosidase and lysosomal enzymes as potential biomarkers of disease progression in amyotrophic lateral sclerosis: a survey clinic-based study. J Neurol Sci. 2015;348(1–2):245–50.

    Article  CAS  PubMed  Google Scholar 

  64. Martinez-Merino L, Iridoy M, Galbete A, et al. Evaluation of chitotriosidase and CC-chemokine ligand 18 as biomarkers of microglia activation in amyotrophic lateral sclerosis. Neurodegener Dis. 2018;18(4):208–15.

    Article  CAS  PubMed  Google Scholar 

  65. Oeckl P, Weydt P, Thal DR, Weishaupt JH, Ludolph AC, Otto M. Proteomics in cerebrospinal fluid and spinal cord suggests UCHL1, MAP2 and GPNMB as biomarkers and underpins importance of transcriptional pathways in amyotrophic lateral sclerosis. Acta Neuropathol. 2020;139(1):119–34.

    Article  CAS  PubMed  Google Scholar 

  66. Oeckl P, Weydt P, Steinacker P, et al. Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase. J Neurol Neurosurg Psychiatry. 2019;90(1):4–10.

    Article  PubMed  Google Scholar 

  67. Gille B, De Schaepdryver M, Dedeene L, et al. Inflammatory markers in cerebrospinal fluid: independent prognostic biomarkers in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry. 2019;90(12):1338–46.

    PubMed  Google Scholar 

  68. Thompson AG, Gray E, Thezenas ML, et al. Cerebrospinal fluid macrophage biomarkers in amyotrophic lateral sclerosis. Ann Neurol. 2018;83(2):258–68.

    Article  CAS  PubMed  Google Scholar 

  69. Thompson AG, Gray E, Bampton A, Raciborska D, Talbot K, Turner MR. CSF chitinase proteins in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2019;90(11):1215–20.

    Article  PubMed  Google Scholar 

  70. Vu L, An J, Kovalik T, Gendron T, Petrucelli L, Bowser R. Cross-sectional and longitudinal measures of chitinase proteins in amyotrophic lateral sclerosis and expression of CHI3L1 in activated astrocytes. J Neurol Neurosurg Psychiatry. 2020;91(4):350–8.

    Article  PubMed  Google Scholar 

  71. Barschke P, Oeckl P, Steinacker P, et al. Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. J Neurol Neurosurg Psychiatry. 2020;91(5):503–11.

    Article  PubMed  Google Scholar 

  72. Abu-Rumeileh S, Steinacker P, Polischi B, et al. CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia. Alzheimers Res Ther. 2019;12(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Ticozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verde, F., Ticozzi, N. (2022). Amyotrophic Lateral Sclerosis: Neurochemical Biomarkers. In: Angelini, C. (eds) Acquired Neuromuscular Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-06731-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06731-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06730-3

  • Online ISBN: 978-3-031-06731-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics