Skip to main content

The Red-Blue Separation Problem on Graphs

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13270))

Included in the following conference series:

  • 558 Accesses

Abstract

We introduce the Red-Blue Separation problem on graphs, where we are given a graph \(G = (V, E)\) whose vertices are colored either red or blue, and we want to select a (small) subset \(\mathcal{S} \subseteq V\), called red-blue separating set, such that for every red-blue pair of vertices, there is a vertex \(s \in \mathcal S\) whose closed neighborhood contains exactly one of the two vertices of the pair. We study the computational complexity of Red-Blue Separation, in which one asks whether a given red-blue colored graph has a red-blue separating set of size at most a given integer. We prove that the problem is NP-complete even for restricted graph classes. We also show that it is always approximable in polynomial time within a factor of \(2\ln n\), where n is the input graph’s order. In contrast, for triangle-free graphs and for graphs of bounded maximum degree, we show that Red-Blue Separation is solvable in polynomial time when the size of the smaller color class is bounded by a constant. However, on general graphs, we show that the problem is W[2]-hard even when parameterized by the solution size plus the size of the smaller color class. We also consider the problem Max Red-Blue Separation where the coloring is not part of the input. Here, given an input graph G, we want to determine the smallest integer k such that, for every possible red-blue-coloring of G, there is a red-blue separating set of size at most k. We derive tight bounds on the cardinality of an optimal solution of Max Red-Blue Separation, showing that it can range from logarithmic in the graph order, up to the order minus one. We also give bounds with respect to related parameters. For trees however we prove an upper bound of two-thirds the order. We then show that Max Red-Blue Separation is NP-hard, even for graphs of bounded maximum degree, but can be approximated in polynomial time within a factor of \(O(\ln ^ 2 n)\).

This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux - SysNum (ANR-10-IDEX-03-02).

F. Foucaud—Research financed by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25) and by the ANR project GRALMECO (ANR-21-CE48-0004-01).

T. Lehtilä—Research supported by the Finnish Cultural Foundation and by the Academy of Finland grant 338797.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One class consists of vertices colored red and the other class consists of vertices colored blue.

  2. 2.

    A graph \(G = (V, E)\) is called a split graph when the vertices in V can be partitioned into an independent set and a clique.

References

  1. Bollobás, B., Scott, A.D.: On separating systems. Eur. J. Comb. 28, 1068–1071 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bondy, J.A.: Induced subsets. J. Comb. Theory Ser. B 12(2), 201–202 (1972)

    Article  MathSciNet  Google Scholar 

  3. Bonnet, É., Giannopoulos, P., Lampis, M.: On the parameterized complexity of red-blue points separation. J. Comput. Geom. 10(1), 181–206 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Bousquet, N., Lagoutte, A., Li, Z., Parreau, A., Thomassé, S.: Identifying codes in hereditary classes of graphs and VC-dimension. SIAM J. Discret. Math. 29(4), 2047–2064 (2015)

    Article  MathSciNet  Google Scholar 

  5. Cǎlinescu, G., Dumitrescu, A., Karloff, H.J., Wan, P.: Separating points by axis-parallel lines. Int. J. Comput. Geom. Appl. 15(6), 575–590 (2005)

    Article  MathSciNet  Google Scholar 

  6. Charbit, E., Charon, I., Cohen, G., Hudry, O., Lobstein, A.: Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity. Adv. Math. Commun. 2(4), 403–420 (2008)

    Article  MathSciNet  Google Scholar 

  7. Chlebus, B.S., Nguyen, S.H.: On finding optimal discretizations for two attributes. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 537–544. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69115-4_74

    Chapter  Google Scholar 

  8. Crowston, R., Gutin, G., Jones, M., Muciaccia, G., Yeo, A.: Parameterizations of test cover with bounded test sizes. Algorithmica 74(1), 367–384 (2016)

    Article  MathSciNet  Google Scholar 

  9. Dey, S., Foucaud, F., Nandy, S.C., Sen, A.: Discriminating codes in geometric setups. In: Proceedings of the 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics, vol. 181, pp. 24:1–24:16 (2020)

    Google Scholar 

  10. De Bontridder, K.M.J., et al.: Approximation algorithms for the test cover problem. Math. Program. Ser. B 98, 477–491 (2003)

    Article  MathSciNet  Google Scholar 

  11. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: ACM Symposium on Theory of Computing, vol. 46, pp. 624–633 (2014)

    Google Scholar 

  12. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  Google Scholar 

  13. Erdös, P.: Some combinatorial, geometric and set theoretic problems in measure theory. In: Kölzow, D., Maharam-Stone, D. (eds.) Measure Theory Oberwolfach 1983. LNM, vol. 1089, pp. 321–327. Springer, Heidelberg (1984). https://doi.org/10.1007/BFb0072626

    Chapter  Google Scholar 

  14. Foucaud, F., Guerrini, E., Kovše, M., Naserasr, R., Parreau, A., Valicov, P.: Extremal graphs for the identifying code problem. Eur. J. Comb. 32(4), 628–638 (2011)

    Article  MathSciNet  Google Scholar 

  15. Gledel, V., Parreau, A.: Identification of points using disks. Discret. Math. 342, 256–269 (2019)

    Article  MathSciNet  Google Scholar 

  16. Har-Peled, S., Jones, M.: On separating points by lines. Discret. Comput. Geom. 63, 705–730 (2020)

    Article  MathSciNet  Google Scholar 

  17. Henning, M.A., Yeo, A.: Distinguishing-transversal in hypergraphs and identifying open codes in cubic graphs. Graphs Comb. 30(4), 909–932 (2014)

    Article  MathSciNet  Google Scholar 

  18. Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Inf. Theory 44, 599–611 (1998)

    Article  MathSciNet  Google Scholar 

  19. Kratsch, S., Masařík, T., Muzi, I., Pilipczuk, M., Sorge, M.: Optimal discretization is fixed-parameter tractable. In: Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pp. 1702–1719 (2021)

    Google Scholar 

  20. Kujala, J., Elomaa, T.: Improved algorithms for univariate discretization of continuous features. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 188–199. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74976-9_20

    Chapter  Google Scholar 

  21. Lobstein, A.: Watching systems, identifying, locating-dominating and discriminating codes in graphs: a bibliography. https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf

  22. Misra, N., Mittal, H., Sethia, A.: Red-blue point separation for points on a circle. In: Proceedings of the 32nd Canadian Conference on Computational Geometry (CCCG 2020), pp. 266–272 (2020)

    Google Scholar 

  23. Moret, B.M.E., Shapiro, H.D.: On minimizing a set of tests. SIAM J. Sci. Stat. Comput. 6(4), 983–1003 (1985)

    Article  Google Scholar 

  24. Rényi, A.: On random generating elements of a finite Boolean algebra. Acta Scientiarum Mathematicarum Szeged 22, 75–81 (1961)

    MathSciNet  MATH  Google Scholar 

  25. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discret. Appl. Math. 8(1), 85–89 (1984)

    Article  MathSciNet  Google Scholar 

  26. Ungrangsi, R., Trachtenberg, A., Starobinski, D.: An implementation of indoor location detection systems based on identifying codes. In: Aagesen, F.A., Anutariya, C., Wuwongse, V. (eds.) INTELLCOMM 2004. LNCS, vol. 3283, pp. 175–189. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30179-0_16

    Chapter  Google Scholar 

  27. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)

    Article  Google Scholar 

  28. Zvervich, I.E., Zverovich, V.E.: An induced subgraph characterization of domination perfect graphs. J. Graph Theory 20(3), 375–395 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Foucaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dev, S.R., Dey, S., Foucaud, F., Klasing, R., Lehtilä, T. (2022). The Red-Blue Separation Problem on Graphs. In: Bazgan, C., Fernau, H. (eds) Combinatorial Algorithms. IWOCA 2022. Lecture Notes in Computer Science, vol 13270. Springer, Cham. https://doi.org/10.1007/978-3-031-06678-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06678-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06677-1

  • Online ISBN: 978-3-031-06678-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics