Skip to main content

Distributed Quantum Machine Learning

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1585))

Included in the following conference series:

Abstract

Quantum computers can solve specific complex tasks for which no reasonable-time classical algorithm is known. Quantum computers do however also offer inherent security of data, as measurements destroy quantum states. Using shared entangled states, multiple parties can collaborate and securely compute quantum algorithms. In this paper we propose an approach for distributed quantum machine learning, which allows multiple parties to securely perform computations, without having to reveal their data. We will consider a distributed adder and a distributed distance-based classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  Google Scholar 

  2. Pompili, M., et al.: Realization of a multinode quantum network of remote solidstate qubits. Science 372(6539), 259–264 (2021)

    Article  Google Scholar 

  3. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptography. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_23

    Chapter  Google Scholar 

  4. Jozsa, R., Abrams, D.S., Dowling, J.P., Williams, C.P.: Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 85, 2010–2013 (2000)

    Article  Google Scholar 

  5. Chuang, I.L.: Quantum algorithm for distributed clock synchronization. Phys. Rev. Lett. 85(9), 2006–2009 (2000)

    Article  Google Scholar 

  6. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), pp. 160–164 (1982)

    Google Scholar 

  7. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  8. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  Google Scholar 

  9. Eisert, J., Jacobs, K., Papadopoulos, P., Plenio, M.B.: Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000)

    Article  Google Scholar 

  10. Yimsiriwattana , A., Lomonaco, J.: Generalized GHZ states and distributed quantum computing. In: Coding Theory and Quantum Computing, vol. 381 (2004)

    Google Scholar 

  11. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  Google Scholar 

  12. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  Google Scholar 

  13. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  Google Scholar 

  14. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  Google Scholar 

  15. Kiltz, E., Leander, G., Malone-Lee, J.: Secure computation of the mean and related statistics. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 283–302. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_16

    Chapter  MATH  Google Scholar 

  16. Draper, T.G.: Addition on a Quantum Computer (2000). eprint: arXiv:quant-ph/0008033v1

  17. Beauregard, S.: Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Info. Comput. 3(2), 175–185 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Ruiz-Perez, L., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 16(6), 1–14 (2017). https://doi.org/10.1007/s11128-017-1603-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhys. Lett.) 119(6), 60002 (2017)

    Article  Google Scholar 

  20. Wezeman, R., Neumann, N., Phillipson, F.: Distance-based classifier on the quantum inspire. Digitale Welt 4(1), 85–91 (2019)

    Article  Google Scholar 

  21. Blank, C., da Silva, A.J., de Albuquerque, L.P., Petruccione, F., Park, D.K.: Compact quantum distance-based binary classifier (2022). eprint: arXiv:2202.02151

  22. Long, G.L., Sun, Y.: Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A 64(1), 014303 (2001)

    Article  Google Scholar 

  23. Anis, M.S., et al.: Qiskit: an open-source framework for quantum computing (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels M. P. Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neumann, N.M.P., Wezeman, R.S. (2022). Distributed Quantum Machine Learning. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2022. Communications in Computer and Information Science, vol 1585. Springer, Cham. https://doi.org/10.1007/978-3-031-06668-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06668-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06667-2

  • Online ISBN: 978-3-031-06668-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics