Skip to main content

Nuclear Organization in Response to Stress: A Special Focus on Nucleoli

  • Chapter
  • First Online:
Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 70))

Abstract

In this chapter, we discuss the nuclear organization and how it responds to different types of stress. A key component in these responses is molecular traffic between the different sub-nucleolar compartments, such as nucleoplasm, chromatin, nucleoli, and various speckle and body compartments. This allows specific repair and response activities in locations where they normally are not active and serve to halt sensitive functions until the stress insult passes and inflicted damage has been repaired. We focus on mammalian cells and their nuclear organization, especially describing the central role of the nucleolus in nuclear stress responses. We describe events after multiple stress types, including DNA damage, various drugs, and toxic compounds, and discuss the involvement of macromolecular traffic between dynamic, phase-separated nuclear organelles and foci. We delineate the key proteins and non-coding RNA in the formation of stress-responsive, non-membranous nuclear organelles, many of which are relevant to the formation of and utilization in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4NQO:

4-nitroquinoline oxide

BER:

base excision repair

CB:

Cajal body

CPT:

camptothecin

DFC:

dense fibrillar component

DSB:

double-strand break

FC:

fibrillar center

GC:

granular component

HR:

homologous recombination

IR:

ionizing radiation

NER:

nucleotide excision repair

NHEJ:

non-homologous end joining

NS:

nuclear speckle

PML-NB:

PML nuclear body

PS:

paraspeckle

RBP:

RNA-binding protein

rDNA:

ribosomal DNA

RNApol:

RNA polymerase

rRNA:

ribosomal RNA

snoRNP:

small nucleolar ribonucleoprotein

snRNP:

small nuclear ribonucleoprotein

SSU:

small subunit processome

UV:

ultraviolet

References

  • Adam S, Polo SE (2012) Chromatin dynamics during nucleotide excision repair:histones on the move. Int J Mol Sci 13(9):11895–11911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Baker EA, Boyle J, Harry R, Kill IR (2004 Jan 1) A p53-independent pathway regulates nucleolar segregation and antigen translocation in response to DNA damage induced by UV irradiation. Exp Cell Res 292(1):179–186

    Article  CAS  PubMed  Google Scholar 

  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005 Jan 6) Nucleolar proteome dynamics. Nature 433(7021):77–83

    Article  CAS  PubMed  Google Scholar 

  • Audas TE, Jacob MD, Lee S (2012 Jun 1) The nucleolar detention pathway: a cellular strategy for regulating molecular networks. Cell Cycle 11(11):2059–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babinchak WM, Surewicz WK (2020 Mar 27) Liquid-liquid phase separation and its mechanistic role in pathological protein aggregation. J Mol Biol 432(7):1910–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao W, Gu Y, Ta L, Wang K, Xu Z (2016 Jan) Induction of autophagy by the MG-132 proteasome inhibitor is associated with endoplasmic reticulum stress in MCF-7 cells. Mol Med Rep 13(1):796–804

    Article  CAS  PubMed  Google Scholar 

  • Battle DJ, Kasim M, Yong J, Lotti F, Lau CK, Mouaikel J, Zhang Z, Han K, Wan L, Dreyfuss G (2006) The SMN complex: an assembly machine for RNPs. Cold Spring Harb Symp Quant Biol 71:313–320

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen MV, Kosar M, Bunkenborg J, Payne MR, Bartkova J, Lindström MS, Lukas J, Andersen JS, Bartek J, Larsen DH (2018) DNA damage-induced dynamic changes in abundance and cytosol-nuclear translocation of proteins involved in translational processes, metabolism, and autophagy. Cell Cycle 17(17):2146–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisvert FM, Lam YW, Lamont D, Lamond AI (2010 Mar) A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol Cell Proteomics 9(3):457–470

    Article  CAS  PubMed  Google Scholar 

  • Brecht RM, Liu CC, Beilinson HA, Khitun A, Slavoff SA, Schatz DG (2020 Feb 25) Nucleolar localization of RAG1 modulates V(D)J recombination activity. Proc Natl Acad Sci U S A 117(8):4300–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredfeldt TG, Kopplin MJ, Gandolfi AJ (2004 Aug 1) Effects of arsenite on UROtsa cells: low-level arsenite causes accumulation of ubiquitinated proteins that is enhanced by reduction in cellular glutathione levels. Toxicol Appl Pharmacol 198(3):412–418

    Article  CAS  PubMed  Google Scholar 

  • Brunet S, Sardon T, Zimmerman T, Wittmann T, Pepperkok R, Karsenti E, Vernos I (2004 Dec) Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts. Mol Biol Cell 15(12):5318–5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchwalter A, Hetzer MW (2017 Aug 30) Nucleolar expansion and elevated protein translation in premature aging. Nat Commun 8(1):328

    Article  PubMed  PubMed Central  Google Scholar 

  • Bursać S, Prodan Y, Pullen N, Bartek J, Volarević S (2021 Jan) Dysregulated ribosome biogenesis reveals therapeutic liabilities in cancer. Trends Cancer. 7(1):57–76

    Article  PubMed  Google Scholar 

  • Carusillo A, Mussolino C (2020 Jul 10) DNA damage: from threat to treatment. Cell 9(7):1665

    Article  CAS  Google Scholar 

  • Chan PK, Bloom DA, Hoang TT (1999 Oct 14) The N-terminal half of NPM dissociates from nucleoli of HeLa cells after anticancer drug treatments. Biochem Biophys Res Commun 264(1):305–309

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Belmont AS (2019 Apr) Genome organization around nuclear speckles. Curr Opin Genet Dev 55:91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitale S, Richly H (2017 May 9) Nuclear organization of nucleotide excision repair is mediated by RING1B dependent H2A-ubiquitylation. Oncotarget 8(19):30870–30887

    Article  PubMed  PubMed Central  Google Scholar 

  • Cioce M, Boulon S, Matera AG, Lamond AI (2006 Nov 6) UV-induced fragmentation of Cajal bodies. J Cell Biol 175(3):401–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Thé H, Le Bras M, Lallemand-Breitenbach V (2012 Jul 9) The cell biology of disease: acute promyelocytic leukemia, arsenic, and PML bodies. J Cell Biol 198(1):11–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Dellaire G, Bazett-Jones DP (2004 Sep) PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. BioEssays 26(9):963–977

    Article  CAS  PubMed  Google Scholar 

  • Dellaire G, Bazett-Jones DP (2007 Aug 1) Beyond repair foci: subnuclear domains and the cellular response to DNA damage. Cell Cycle 6(15):1864–1872

    Article  CAS  PubMed  Google Scholar 

  • Dodson M, de la Vega MR, Harder B, Castro-Portuguez R, Rodrigues SD, Wong PK, Chapman E, Zhang DD (2018 Feb 15) Low-level arsenic causes proteotoxic stress and not oxidative stress. Toxicol Appl Pharmacol 341:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duryee WR (1947 Oct) The effect of X-rays on chromosomes and nucleoli in ovarian eggs of the salamander, Triturus pyrrhogaster. Biol Bull 93(2):206

    CAS  PubMed  Google Scholar 

  • Feric M, Vaidya N, Harmon TS et al (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165(7):1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana F (1781) Traité sur le vénin de la vipère, avec des observations sur la structure primitive du corps animale. Florence, Italy

    Google Scholar 

  • Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M, Lamond AI (2002 Jan 8) Paraspeckles: a novel nuclear domain. Curr Biol 12(1):13–25

    Article  CAS  PubMed  Google Scholar 

  • Franić D, Zubčić K, Boban M (2021 Jan 4) Nuclear ubiquitin-proteasome pathways in Proteostasis maintenance. Biomol Ther 11(1):54

    Google Scholar 

  • Frottin F, Schueder F, Tiwary S, Gupta R, Körner R, Schlichthaerle T, Cox J, Jungmann R, Hartl FU, Hipp MS (2019 Jul 26) The nucleolus functions as a phase-separated protein quality control compartment. Science 365(6451):342–347

    Article  CAS  PubMed  Google Scholar 

  • Galganski L, Urbanek MO, Krzyzosiak WJ (2017 Oct 13) Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 45(18):10350–10368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Jove Navarro M, Kashida S, Chouaib R, Souquere S, Pierron G, Weil D, Gueroui Z (2019 Jul 19) RNA is a critical element for the sizing and the composition of phase-separated RNA-protein condensates. Nat Commun 10(1):3230

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilder AS, Do PM, Carrero ZI, Cosman AM, Broome HJ, Velma V, Martinez LA, Hebert MD (2011 Apr) Coilin participates in the suppression of RNA polymerase I in response to cisplatin-induced DNA damage. Mol Biol Cell 22(7):1070–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granick D (1975 May) Nucleolar necklaces in chick embryo fibroblast cells. II. Microscope observations of the effect of adenosine analogues on nucleolar necklace formation. J Cell Biol 65(2):418–427

    Article  CAS  PubMed  Google Scholar 

  • Granick S, Granick D (1971 Dec) Nucleolar necklaces in chick embryo myoblasts formed by lack of arginine. J Cell Biol 51(3):636–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greco A (2009 Jul) Involvement of the nucleolus in replication of human viruses. Rev Med Virol 19(4):201–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A (2003) The nuclear lamina and its functions in the nucleus. Int Rev Cytol 226:1–62

    Article  CAS  PubMed  Google Scholar 

  • Gsell C, Richly H, Coin F, Naegeli H (2020 Feb 28) A chromatin scaffold for DNA damage recognition: how histone methyltransferases prime nucleosomes for repair of ultraviolet light-induced lesions. Nucleic Acids Res 48(4):1652–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannan KM, Hannan RD, Rothblum LI (1998 Mar 26) Transcription by RNA polymerase I. Front Biosci 3:d376–d398

    Article  CAS  PubMed  Google Scholar 

  • Hauer MH, Gasser SM (2017 Nov 15) Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev 31(22):2204–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1972 Nov) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci U S A 69(11):3394–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriksson S, Rassoolzadeh H, Hedström E, Coucoravas C, Julner A, Goldstein M, Imreh G, Zhivotovsky B, Kastan MB, Helleday T, Farnebo M (2014 Dec 15) The scaffold protein WRAP53β orchestrates the ubiquitin response critical for DNA double-strand break repair. Genes Dev 28(24):2726–2738

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirose T, Yamazaki T, Nakagawa S (2019) Molecular anatomy of the architectural NEAT1 noncoding RNA: the domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. Wiley Interdiscip Rev RNA 10(6):e1545

    Article  PubMed  Google Scholar 

  • Hozák P, Cook PR, Schöfer C, Mosgöller W, Wachtler F (1994 Feb) Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107(Pt 2):639–648

    Article  PubMed  Google Scholar 

  • Hu D, Smith E, Garruss A et al (2013) The little elongation complex functions at initiation and elongation phases of snRNA gene transcription. Mol Cell 51(4):493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman AA, Weber CA, Jülicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58

    Article  CAS  PubMed  Google Scholar 

  • Ide S, Imai R, Ochi H, Maeshima K (2020 Oct 14) Transcriptional suppression of ribosomal DNA with phase separation. Sci Adv 6(42):eabb5953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilık İA, Aktaş T (2021 Jul 10) Nuclear speckles: dynamic hubs of gene expression regulation. FEBS J. https://doi.org/10.1111/febs.16117

  • Jackson SP, Bartek J (2009 Oct 22) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob MD, Audas TE, Mullineux ST, Lee S (2012 Jul 1) Where no RNA polymerase has gone before: novel functional transcripts derived from the ribosomal intergenic spacer. Nucleus 3(4):315–319

    Article  PubMed  Google Scholar 

  • Jacob MD, Audas TE, Uniacke J, Trinkle-Mulcahy L, Lee S (2013 Sep) Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus. Mol Biol Cell 24(18):2943–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarboui MA, Bidoia C, Woods E, Roe B, Wynne K, Elia G, Hall WW, Gautier VW (2012) Nucleolar protein trafficking in response to HIV-1 tat: rewiring the nucleolus. PLoS One 7(11):e48702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraman S, Chittiboyina S, Bai Y, Abad PC, Vidi PA, Stauffacher CV, Lelièvre SA (2017 Nov 16) The nuclear mitotic apparatus protein NuMA controls rDNA transcription and mediates the nucleolar stress response in a p53-independent manner. Nucleic Acids Res 45(20):11725–11742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston HE, Samant RS (2021 Aug) Alternative systems for misfolded protein clearance: life beyond the proteasome. FEBS J 288(15):4464–4487

    Article  CAS  PubMed  Google Scholar 

  • Kempfer R, Pombo A (2020 Apr) Methods for mapping 3D chromosome architecture. Nat Rev Genet 21(4):207–226

    Article  CAS  PubMed  Google Scholar 

  • Kisselev AF, van der Linden WA, Overkleeft HS (2012 Jan 27) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19(1):99–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaips CL, Jayaraj GG, Hartl FU (2018 Jan 2) Pathways of cellular proteostasis in aging and disease. J Cell Biol 217(1):51–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler DR, Hanawalt PC (1996 Aug 1) Recruitment of damaged DNA to the nuclear matrix in hamster cells following ultraviolet irradiation. Nucleic Acids Res 24(15):2877–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korsholm LM, Gál Z, Nieto B, Quevedo O, Boukoura S, Lund CC, Larsen DH (2020 Sep 25) Recent advances in the nucleolar responses to DNA double-strand breaks. Nucleic Acids Res 48(17):9449–9461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurki S, Latonen L, Laiho M (2003 Oct 1) Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci 116(Pt 19):3917–3925

    Article  CAS  PubMed  Google Scholar 

  • Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M (2004 May) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5(5):465–475

    Article  CAS  PubMed  Google Scholar 

  • Lallemand-Breitenbach V, de Thé H (2018) PML nuclear bodies: from architecture to function. Curr Opin Cell Biol 52:154–161

    Article  CAS  PubMed  Google Scholar 

  • Lam YW, Lamond AI, Mann M, Andersen JS (2007 May 1) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17(9):749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamm N, Rogers S, Cesare AJ (2021 Oct) Chromatin mobility and relocation in DNA repair. Trends Cell Biol 31(10):843–855

    Article  CAS  PubMed  Google Scholar 

  • Lamond AI, Spector DL (2003 Aug) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4(8):605–612

    Article  CAS  PubMed  Google Scholar 

  • Latonen L (2011 May) Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress. Proteasome inhibitors induce nuclear ribonucleoprotein inclusions that accumulate several key factors of neurodegenerative diseases and cancer. BioEssays 33(5):386–395

    Article  CAS  PubMed  Google Scholar 

  • Latonen L (2019 Apr 26) Phase-to-phase with nucleoli - stress responses, protein aggregation and novel roles of RNA. Front Cell Neurosci 13:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latonen L, Kurki S, Pitkänen K, Laiho M (2003 Jan) p53 and MDM2 are regulated by PI-3-kinases on multiple levels under stress induced by UV radiation and proteasome dysfunction. Cell Signal 15(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Latonen L, Moore HM, Bai B, Jäämaa S, Laiho M (2011 Feb 17) Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene 30(7):790–805

    Article  CAS  PubMed  Google Scholar 

  • Lehman BJ, Lopez-Diaz FJ, Santisakultarm TP, Fang L, Shokhirev MN, Diffenderfer KE, Manor U, Emerson BM (2021 Jan 7) Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress. PLoS Genet 17(1):e1009277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung AK, Trinkle-Mulcahy L, Lam YW, Andersen JS, Mann M, Lamond AI (2006 Jan 1) NOPdb: nucleolar proteome database. Nucleic Acids Res 34(Database issue):D218–D220

    Article  CAS  PubMed  Google Scholar 

  • Lindström MS (2011) NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem Res Int 2011:195209

    Article  PubMed  Google Scholar 

  • Lindström MS, Latonen L (2013) The nucleolus as a stress response organelle. In: O’Day DH, Catalano A (eds) Proteins of the nucleolus. Regulation, translocation and biomedical functions. Springer, Berlin, pp 251–273

    Chapter  Google Scholar 

  • Lindström MS, Jurada D, Bursac S, Orsolic I, Bartek J, Volarevic S (2018 May) Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene 37(18):2351–2366

    Article  PubMed  PubMed Central  Google Scholar 

  • Logan MK, McLaurin DM, Hebert MD (2020) Synergistic interactions between Cajal bodies and the miRNA processing machinery. Mol Biol Cell 31(15):1561–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louka A, Zacco E, Temussi PA, Tartaglia GG, Pastore A (2020 Dec 2) RNA as the stone guest of protein aggregation. Nucleic Acids Res 48(21):11880–11889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luijsterburg MS, Lindh M, Acs K, Vrouwe MG, Pines A, van Attikum H, Mullenders LH, Dantuma NP (2012 Apr 16) DDB2 promotes chromatin decondensation at UV-induced DNA damage. J Cell Biol 197(2):267–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machyna M, Neugebauer KM, Staněk D (2015) Coilin: the first 25 years. RNA Biol 12(6):590–596

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangan H, McStay B (2021 Apr 1) Human nucleoli comprise multiple constrained territories, tethered to individual chromosomes. Genes Dev 35(7–8):483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangan H, Gailín MÓ, McStay B (2017 Dec) Integrating the genomic architecture of human nucleolar organizer regions with the biophysical properties of nucleoli. FEBS J 284(23):3977–3985

    Article  CAS  PubMed  Google Scholar 

  • McCluggage F, Fox AH (2021 May) Paraspeckle nuclear condensates: global sensors of cell stress? BioEssays 43(5):e2000245

    Article  PubMed  Google Scholar 

  • Meder VS, Boeglin M, de Murcia G, Schreiber V (2005 Jan 1) PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci 118(Pt 1):211–222

    Article  CAS  PubMed  Google Scholar 

  • Ménisser-de Murcia J, Mark M, Wendling O, Wynshaw-Boris A, de Murcia G (2001 Mar) Early embryonic lethality in PARP-1 Atm double-mutant mice suggests a functional synergy in cell proliferation during development. Mol Cell Biol 21(5):1828–1832

    Article  PubMed  Google Scholar 

  • Montanaro L, Treré D, Derenzini M (2008 Aug) Nucleolus, ribosomes, and cancer. Am J Pathol 173(2):301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore HM, Bai B, Boisvert FM, Latonen L, Rantanen V, Simpson JC, Pepperkok R, Lamond AI, Laiho M (2011 Oct) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10(10):M111.009241

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno-Castro C, Prieto-Sánchez S, Sánchez-Hernández N, Hernández-Munain C, Suñé C (2019) Role for the splicing factor TCERG1 in Cajal body integrity and snRNP assembly. J Cell Sci 132(22):jcs232728

    Article  CAS  PubMed  Google Scholar 

  • Nait Slimane S, Marcel V, Fenouil T et al (2020) Ribosome biogenesis alterations in colorectal cancer. Cell 9(11):1–25

    Google Scholar 

  • Niwa-Kawakita M, Ferhi O, Soilihi H, Le Bras M, Lallemand-Breitenbach V, de Thé H (2017) PML is a ROS sensor activating p53 upon oxidative stress. J Exp Med 214(11):3197–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C (2019 Apr 17) Disruption of RNA metabolism in neurological diseases and emerging therapeutic interventions. Neuron 102(2):294–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onoguchi-Mizutani R, Kirikae Y, Ogura Y, Gutschner T, Diederichs S, Akimitsu N (2021 May 15) Identification of a heat-inducible novel nuclear body containing the long noncoding RNA MALAT1. J Cell Sci 134(10):jcs253559

    Article  CAS  PubMed  Google Scholar 

  • Ozdian T, Holub D, Maceckova Z, Varanasi L, Rylova G, Rehulka J, Vaclavkova J, Slavik H, Moudry P, Znojek P, Stankova J, de Sanctis JB, Hajduch M, Dzubak P (2017 Jun 6) Proteomic profiling reveals DNA damage, nucleolar and ribosomal stress are the main responses to oxaliplatin treatment in cancer cells. J Proteome 162:73–85

    Article  CAS  Google Scholar 

  • Pfister AS, Keil M, Kühl M (2015 Apr 24) The Wnt target protein Peter Pan defines a novel p53-independent nucleolar stress-response pathway. J Biol Chem 290(17):10905–10918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polo SE, Almouzni G (2015 Dec) Chromatin dynamics after DNA damage: the legacy of the access-repair-restore model. DNA Repair (Amst) 36:114–121

    Article  CAS  Google Scholar 

  • Riback JA, Zhu L, Ferrolino MC, Tolbert M, Mitrea DM, Sanders DW, Wei MT, Kriwacki RW, Brangwynne CP (2020 May) Composition-dependent thermodynamics of intracellular phase separation. Nature 581(7807):209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubbi CP, Milner J (2003 Nov 17) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22(22):6068–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakashita E, Endo H (2010 Jul-Aug) SR and SR-related proteins redistribute to segregated fibrillar components of nucleoli in a response to DNA damage. Nucleus 1(4):367–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders JT, Freeman TF, Xu Y, Golloshi R, Stallard MA, Hill AM, San Martin R, Balajee AS, McCord RP (2020 Dec 2) Radiation-induced DNA damage and repair effects on 3D genome organization. Nat Commun 11(1):6178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawyer IA, Hager GL, Dundr M (2017 Jun 3) Specific genomic cues regulate Cajal body assembly. RNA Biol 14(6):791–803

    Article  PubMed  Google Scholar 

  • Sawyer IA, Bartek J, Dundr M (2019a Jun) Phase separated microenvironments inside the cell nucleus are linked to disease and regulate epigenetic state, transcription and RNA processing. Semin Cell Dev Biol 90:94–103

    Article  CAS  PubMed  Google Scholar 

  • Sawyer IA, Sturgill D, Dundr M (2019b Mar) Membraneless nuclear organelles and the search for phases within phases. Wiley Interdiscip Rev RNA. 10(2):e1514

    Article  PubMed  Google Scholar 

  • Scheer U, Hügle B, Hazan R, Rose KM (1984 Aug) Drug-induced dispersal of transcribed rRNA genes and transcriptional products: immunolocalization and silver staining of different nucleolar components in rat cells treated with 5,6-dichloro-beta-D- ribofuranosylbenzimidazole. J Cell Biol 99(2):672–679

    Article  CAS  PubMed  Google Scholar 

  • Seker H, Rubbi C, Linke SP, Bowman ED, Garfield S, Hansen L, Borden KL, Milner J, Harris CC (2003 Mar 20) UV-C-induced DNA damage leads to p53-dependent nuclear trafficking of PML. Oncogene 22(11):1620–1628

    Article  CAS  PubMed  Google Scholar 

  • Staněk D, Fox AH (2017) Nuclear bodies: news insights into structure and function. Curr Opin Cell Biol 46:94–101

    Article  PubMed  Google Scholar 

  • Stanic M, Mekhail K (2021 Sep 28) Integration of DNA damage responses with dynamic spatial genome organization. Trends Genet, S0168-9525(21)00261-4. https://doi.org/10.1016/j.tig.2021.08.016

  • Stenström L, Mahdessian D, Gnann C, Cesnik AJ, Ouyang W, Leonetti MD, Uhlén M, Cuylen-Haering S, Thul PJ, Lundberg E (2020 Aug) Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol Syst Biol 16(8):e9469

    Article  PubMed  PubMed Central  Google Scholar 

  • Stults DM, Killen MW, Pierce HH, Pierce AJ (2008 Jan) Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res 18(1):13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton EC, McDevitt CE, Prochnau JY, Yglesias MV, Mroz AM, Yang MC, Cunningham RM, Hendon CH, DeRose VJ (2019 Nov 20) Nucleolar stress induction by Oxaliplatin and derivatives. J Am Chem Soc 141(46):18411–18415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, White J, Shah S, Thomassie J, Suo S, Eng CL, Guttman M, Yuan GC, Cai L (2021 Feb) Integrated spatial genomics reveals global architecture of single nuclei. Nature 590(7845):344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010 Sep 24) The nuclear- retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39(6):925–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner AJ, Knox AA, Watkins NJ (2012 Feb) Nucleolar disruption leads to the spatial separation of key 18S rRNA processing factors. RNA Biol 9(2):175–186

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2017 Jun) Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 44:18–30

    Article  CAS  PubMed  Google Scholar 

  • van Sluis M, McStay B (2015 Jul 10) DNA repair: location, location, location. Oncotarget 6(19):16828–16829

    Article  PubMed  PubMed Central  Google Scholar 

  • van Sluis M, McStay B (2017 Jun) Nucleolar reorganization in response to rDNA damage. Curr Opin Cell Biol 46:81–86

    Article  PubMed  Google Scholar 

  • van Sluis M, McStay B (2019 Oct) Nucleolar DNA double-Strand break responses underpinning rDNA genomic stability. Trends Genet 35(10):743–753

    Article  PubMed  Google Scholar 

  • van Sluis M, van Vuuren C, Mangan H, McStay B (2020 May 12) NORs on human acrocentric chromosome p-arms are active by default and can associate with nucleoli independently of rDNA. Proc Natl Acad Sci U S A 117(19):10368–10377

    Article  PubMed  PubMed Central  Google Scholar 

  • Vancurova M, Hanzlikova H, Knoblochova L et al (2019) PML nuclear bodies are recruited to persistent DNA damage lesions in an RNF168-53BP1 dependent manner and contribute to DNA repair. DNA Repair (Amst) 78:114–127

    Article  CAS  Google Scholar 

  • Veith S, Schink A, Engbrecht M, Mack M, Rank L, Rossatti P, Hakobyan M, Goly D, Hefele T, Frensch M, Fischbach A, Bürkle A, Mangerich A (2019 Jul 11) PARP1 regulates DNA damage-induced nucleolar-nucleoplasmic shuttling of WRN and XRCC1 in a toxicant and protein-specific manner. Sci Rep 9(1):10075

    Article  PubMed  PubMed Central  Google Scholar 

  • Velichko AK, Ovsyannikova N, Petrova NV, Luzhin AV, Vorobjeva M, Gavrikov AS, Mishin AS, Kireev II, Razin SV, Kantidze OL (2021 Aug 2) Treacle and TOPBP1 control replication stress response in the nucleolus. J Cell Biol 220(8):e202008085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Duan Y, Duan G, Wang Q, Zhang K, Deng X, Qian B, Gu J, Ma Z, Zhang S, Guo L, Liu C, Fang Y (2020 Aug 6) Stress induces dynamic, cytotoxicity-antagonizing TDP-43 nuclear bodies via Paraspeckle LncRNA NEAT1-mediated liquid-liquid phase separation. Mol Cell 79(3):443–458.e7

    Article  CAS  PubMed  Google Scholar 

  • Warren S, Holt MW, Sommers SC (1951 Jun) Some early nuclear effects of ionizing radiation. Proc Soc Exp Biol Med 77(2):288–291

    Article  CAS  PubMed  Google Scholar 

  • Wiedner HJ, Giudice J (2021 Jun) It's not just a phase: function and characteristics of RNA-binding proteins in phase separation. Nat Struct Mol Biol 28(6):465–473

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Souquere S, Chujo T et al (2018) Functional domains of NEAT1 architectural lncRNA induce Paraspeckle assembly through phase separation. Mol Cell 70(6):1038–1053.e7

    Article  CAS  PubMed  Google Scholar 

  • Yasuda S, Tsuchiya H, Kaiho A, Guo Q, Ikeuchi K, Endo A, Arai N, Ohtake F, Murata S, Inada T, Baumeister W, Fernández-Busnadiego R, Tanaka K, Saeki Y (2020 Feb) Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578(7794):296–300

    Article  CAS  PubMed  Google Scholar 

  • Yung BY, Busch RK, Busch H, Mauger AB, Chan PK (1985 Nov 15) Effects of actinomycin D analogs on nucleolar phosphoprotein B23 (37,000 daltons/pI 5.1). Biochem Pharmacol 34(22):4059–4063

    Article  CAS  PubMed  Google Scholar 

  • Zbinden A, Pérez-Berlanga M, De Rossi P, Polymenidou M (2020 Oct 12) Phase separation and neurodegenerative diseases: a disturbance in the force. Dev Cell 55(1):45–68

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Dunner K Jr, McConkey DJ (2010 Jan 21) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29(3):451–462

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work by the authors is supported by the Foundation of Finnish Cancer Institute, Academy of Finland (grant nos. 317871, 334774), Sigrid Juselius Foundation, and Cancer Foundation Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Latonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Batnasan, E., Koivukoski, S., Kärkkäinen, M., Latonen, L. (2022). Nuclear Organization in Response to Stress: A Special Focus on Nucleoli. In: Kloc, M., Kubiak, J.Z. (eds) Nuclear, Chromosomal, and Genomic Architecture in Biology and Medicine. Results and Problems in Cell Differentiation, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-031-06573-6_17

Download citation

Publish with us

Policies and ethics