Skip to main content

Foot Posture During Quadrupedal Walking in Primates

  • Chapter
  • First Online:
The Evolution of the Primate Foot

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

  • 467 Accesses

Abstract

A highly mobile grasping foot is a hallmark of primates. Grasping feet facilitated the navigation of an arboreal environment in the earliest primates. Identifying anatomical traits of pedal grasping abilities, diagnostic of terrestriality, or both requires a comprehensive understanding of foot positions and joint postures used during arboreal and terrestrial quadrupedalism. Movements at the ankle, hindfoot, midfoot, and forefoot allow various parts of the plantar surface of the foot (sole) to contact the substrate. Patterns in the timing of substrate contact in each region of the foot, particularly the heel and midfoot, have been used to define and categorize primate foot postures. This chapter describes each foot posture in terms of anatomy and function. Where possible, foot postures are compared and contrasted to postures available in the hand to highlight the role of the foot and the hand, as well as their decoupling, during primate quadrupedalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barden, M. B., Wunderlich, R. E., & Demes, B. (2010). Plantar pressure during bipedalism and quadrupedalism in Cebus. American Journal of Physical Anthropology, 141, 61.

    Google Scholar 

  • Berillon, G., D’Août, K., Daver, G., Dubreuil, G., Multon, F., Nicolas, G., & de la Villetanet, B. (2011). In what manner do quadrupedal primates walk on two legs? Preliminary results on olive baboons (Papio anubis). In K. D’Août & E. E. Vereecke (Eds.), Primate locomotion (pp. 61–82). Springer.

    Chapter  Google Scholar 

  • Berillon, G., Daver, G., D’Août, K., Nicolas, G., de la Villetanet, B., Multon, F., et al. (2010). Bipedal versus quadrupedal hind limb and foot kinematics in a captive sample of Papio anubis: Setup and preliminary results. International Journal of Primatology, 31, 159–180.

    Article  Google Scholar 

  • Biewener, A. A. (1989). Scaling body support in mammals: Limb posture and muscle mechanics. Science, 245, 45–48.

    Article  CAS  Google Scholar 

  • Biewener, A. A. (1990). Biomechanics of mammalian terrestrial locomotion. Science, 250, 1097–1103.

    Article  CAS  Google Scholar 

  • Biewener, A. A., Farley, C. T., Roberts, T. J., & Temaner, M. (2004). Muscle mechanical advantage of human walking and running: Implications for energy cost. Journal of Applied Physiology, 97, 2266–2274.

    Article  Google Scholar 

  • Bishop, A. (1964). Use of the hand in lower primates. In J. Buettner-Janusch (Ed.), Evolutionary and genetic biology of primates (pp. 133–223). Academic Press.

    Chapter  Google Scholar 

  • Brown, J. C., & Yalden, D. W. (1973). The description of mammals–2 limbs and locomotion of terrestrial mammals. Mammal Review, 3, 107–134.

    Article  Google Scholar 

  • Carrano, M. T. (1997). Morphological indicators of foot posture in mammals: A statistical and biomechanical analysis. Zoological Journal of the Linnean Society, 121, 77–104.

    Article  Google Scholar 

  • Crompton, R. H., Pataky, T. C., Savage, R., D’Août, K., Bennett, M. R., Day, M. H., Bates, K., Morse, S., & Sellers, W. I. (2012). Human-like external function of the foot, and fully upright gait, confirmed in the 3.66 million year old Laetoli hominin footprints by topographic statistics, experimental footprint-formation and computer simulation. Journal of the Royal Society Interface, 9, 707–719.

    Article  Google Scholar 

  • Crompton, R. H., Vereecke, E. E., & Thorpe, S. K. (2008). Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. Journal of Anatomy, 212, 501–543.

    Article  CAS  Google Scholar 

  • D’Août, K., Aerts, P., De Clercq, D., De Meester, K., & Van Elsacker, L. (2002). Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). American Journal of Physical Anthropology, 119, 37–51.

    Article  Google Scholar 

  • Deloison, Y. (1985). Comparative study of calcanei of primates and Pan-Australopithecus-Homo relationship. In P. V. Tobias (Ed.), Hominid evolution: Past, present, and future (pp. 143–147). Alan R. Liss.

    Google Scholar 

  • DeSilva, J. M. (2010). Revisiting the “midtarsal” break. American Journal of Physical Anthropology, 141, 245–258.

    Google Scholar 

  • Elftman, H. (1944). The bipedal walking of the chimpanzee. Journal of Mammalogy, 25, 67–71.

    Article  Google Scholar 

  • Elftman, H., & Manter, J. (1935). Chimpanzee and human feet in bipedal walking. American Journal of Physical Anthropology, 20, 69–79.

    Article  Google Scholar 

  • Fernández, P. J., Holowka, N. B., Demes, B., & Jungers, W. L. (2016). Form and function of the human and chimpanzee forefoot: Implications for early hominin bipedalism. Scientific Reports, 6, 30532.

    Article  Google Scholar 

  • Gebo, D. L. (1985). The nature of the primate grasping foot. American Journal of Physical Anthropology, 67, 269–277.

    Article  Google Scholar 

  • Gebo, D. L. (1986). Anthropoid origins – The foot evidence. Journal of Human Evolution, 15, 421–430.

    Article  Google Scholar 

  • Gebo, D. L. (1987). Locomotor diversity in prosimian primates. American Journal of Primatology, 13, 271–281.

    Article  Google Scholar 

  • Gebo, D. L. (1992). Plantigrady and foot adaptation in African apes: Implications for hominid origins. American Journal of Physical Anthropology, 89, 29–58.

    Article  CAS  Google Scholar 

  • Gebo, D. L. (1993). Functional morphology of the foot in primates. In D. L. Gebo (Ed.), Postcranial adaptation in nonhuman primates (pp. 175–196). Northern Illinois University Press.

    Google Scholar 

  • Gill, C. M., Taneja, A. K., Bredella, M. A., Torriani, M., & DeSilva, J. M. (2014). Osteogenic relationship between the lateral plantar process and the peroneal tubercle in the human calcaneus. Journal of Anatomy, 224, 173–179.

    Article  Google Scholar 

  • Grand, T. I. (1968). Functional anatomy of the upper limb. Bibliotheca Primatologica, 7, 104–125.

    Google Scholar 

  • Grand, T. I. (1972). A mechanical interpretation of terminal branch feeding. Journal of Mammalogy, 53, 198.

    Article  Google Scholar 

  • Hamrick, M. W. (1998). Functional and adaptive significance of primate pads and claws: Evidence from New World anthropoids. American Journal of Physical Anthropology, 106, 113–127.

    Article  CAS  Google Scholar 

  • Hayama, S., Chantani, K., & Nakatsukasa, M. (1994). The digitigrade hand and terrestrial adaptation in Japanese macaques. Anthropological Science, 102, 115–125.

    Article  Google Scholar 

  • Higurashi, Y., Hirasaki, E., & Kumakura, H. (2010). Palmar and plantar pressure while walking on a horizontal ladder and single pole in Macaca fuscata. International Journal of Primatology, 31, 181–190.

    Article  Google Scholar 

  • Hirasaki, E., Higurashi, Y., & Kumakura, H. (2010). Brief communication: Dynamic plantar pressure distribution during locomotion in Japanese macaques (Macaca fuscata). American Journal of Physical Anthropology, 142, 149–156.

    Google Scholar 

  • Holowka, N. B., & Lieberman, D. E. (2018). Rethinking the evolution of the human foot: Insights from experimental research. Journal of Experimental Biology, 221.

    Google Scholar 

  • Hooton, E. (1947). Up from the ape. Macmillan.

    Google Scholar 

  • Jolly, C. J. (1965). The origins and specializations of long-faced Cercopithecoidea. University of London.

    Google Scholar 

  • Keith, A. (1929). The history of the human foot and its bearing on orthopedic practice. Journal of Bone and Joint Surgery, 11, 1–32.

    Google Scholar 

  • Lewis, O. J. (1983). The evolutionary emergence and refinement of the mammalian pattern of foot architecture. Journal of Anatomy, 137, 21–45.

    Google Scholar 

  • Meldrum, D. J. (1991). Kinematics of the cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of hominid terrestrial adaptations. American Journal of Physical Anthropology, 84, 273–289.

    Article  CAS  Google Scholar 

  • Meldrum, D. J. (1993). On plantigrady and quadrupedalism. American Journal of Physical Anthropology, 91, 379–385.

    Article  CAS  Google Scholar 

  • Morton, D. J. (1922). Evolution of the human foot. American Journal of Physical Anthropology, 5, 305–336.

    Article  Google Scholar 

  • Morton, D. J. (1924). Evolution of the human foot II. American Journal of Physical Anthropology, 7, 1–52.

    Article  Google Scholar 

  • Napier, J. R., & Napier, P. H. (1967). A handbook of living primates. Academic Press.

    Google Scholar 

  • Nengo, I. O. (1993). Integrating mechanical and historical approaches to organismal design: The case in the hands and feet of catarrhines. Harvard University.

    Google Scholar 

  • Okada, M. (1985). Primate bipedal walking: Comparative kinematics. In Primate morphophysiology, locomotor analyses and human bipedalism (pp. 47–58). Tokyo University Press.

    Google Scholar 

  • Parker, L. R., Wunderlich, R. E., & Kivell, T. L. (2010). Manual and pedal pressures during sloped quadrupedal locomotion in Lemur catta and Varecia rubra. American Journal of Physical Anthropology, 141, 185.

    Google Scholar 

  • Patel, B. A. (2009). Not so fast: Speed effects on forelimb kinematics in cercopithecoid monkeys and implications for digitigrade postures in primates. American Journal of Physical Anthropology, 140, 92–112.

    Article  Google Scholar 

  • Patel, B. A. (2010a). The interplay between speed, kinetics and hand postures during primate terrestrial locomotion. American Journal of Physical Anthropology, 141, 222–234.

    Google Scholar 

  • Patel, B. A. (2010b). Functional morphology of the cercopithecoid primate metacarpals. Journal of Human Evolution, 58, 320–337.

    Article  Google Scholar 

  • Patel, B. A., & Polk, J. D. (2010). Distal forelimb kinematics in Erythrocebus patas and Papio anubis during walking and galloping. International Journal of Primatology, 31, 191–207.

    Article  Google Scholar 

  • Patel, B. A., & Wunderlich, R. E. (2010). Dynamic pressure patterns in the hands of olive baboons (Papio anubis) during terrestrial locomotion: Implications for cercopithecoid primate hand morphology. The Anatomical Record, 293, 710–718.

    Article  Google Scholar 

  • Polk, J. D. (2004). Influences of limb proportions and body size on locomotor kinematics in terrestrial primates and fossil hominins. Journal of Human Evolution, 47, 237–252.

    Article  CAS  Google Scholar 

  • Rawlins, R. G. (1993). Locomotive and manipulative use of the hand in the Cayo Santiago macaques (Macaca mulatta). In H. Preuschoft & D. J. Chivers (Eds.), Hands of primates (pp. 21–30). Springer-Verlag.

    Chapter  Google Scholar 

  • Reynolds, T. R. (1985). Stresses on the limbs of quadrupedal primates. American Journal of Physical Anthropology, 67, 351–362.

    Article  CAS  Google Scholar 

  • Rollinson, J., & Martin, R. D. (1981). Comparative aspects of primate locomotion, with special reference to arboreal cercopithecoids. Symposia of the Zoological Society of London, 48, 377–427.

    Google Scholar 

  • Rose, M. D. (1973). Quadrupedalism in primates. Primates, 14, 337–357.

    Article  Google Scholar 

  • Schmitt, D., & Larson, S. G. (1995). Heel contact as a function of substrate type and speed in primates. American Journal of Physical Anthropology, 96, 39–50.

    Article  CAS  Google Scholar 

  • Schmitt, D., Zeininger, A., & Granatosky, M. C. (2016). Patterns, variability, and flexibility of hand posture during locomotion in primates. In T. L. Kivell, P. Lemelin, B. G. Richmond, & D. Schmitt (Eds.), The evolution of the primate hand (pp. 345–369). Springer.

    Chapter  Google Scholar 

  • Smith, J. M., & Savage, R. J. G. (1956). Some locomotory adaptations in mammals. Zoological Journal of the Linnaen Society, 42, 603–622.

    Article  Google Scholar 

  • Straus, W. L. (1926). The development of the human foot and its phylogenetic significance. American Journal of Physical Anthropology, 9, 427–438.

    Article  Google Scholar 

  • Susman, R. L. (1983). Evolution of the human foot: Evidence from Plio-Pleistocene hominids. Foot & Ankle, 3, 365–376.

    Article  CAS  Google Scholar 

  • Szalay, F. S., & Dagosto, M. (1988). Evolution of hallucial grasping in the primates. Journal of Human Evolution, 17, 1–33.

    Article  Google Scholar 

  • Thompson, N. E., Holowka, N. B., O’Neill, M. C., & Larson, S. G. (2014). Brief communication: Cineradiographic analysis of the chimpanzee (Pan troglodytes) talonavicular and calcaneocuboid joints. American Journal of Physical Anthropology, 154, 604–608.

    Article  Google Scholar 

  • Toussaint, S. (2018). Towards primate origins: Hands and feet in interdisciplinary perspective. Université Sorbonne Paris.

    Google Scholar 

  • Toussaint, S., & Youlatos, D. (2017). Pedal and manual postures during locomotion on various substrates in strepsirhine and haplorhine primates. Folia Primatologica, 88, 106.

    Google Scholar 

  • Tuttle, R. H. (1969). Knuckle-walking and the problem of human origins. Science, 166, 953–961.

    Article  CAS  Google Scholar 

  • Tuttle, R. H. (1970). Postural, propulsive, and prehensile capabilities in the cheiridia of chimpanzees and other great apes. In G. H. Bourne (Ed.), The chimpanzee (Vol. 2, pp. 167–253). Karger.

    Google Scholar 

  • Tuttle, R. H., & Beck, B. B. (1972). Knuckle walking hand postures in an orangutan (Pongo pygmaeus). Nature, 236, 33–34.

    Article  CAS  Google Scholar 

  • Vereecke, E. E., D’Août, K., De Clercq, D., Van Elsacker, L., & Aerts, P. (2003). Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus). American Journal of Physical Anthropology, 120, 373–383.

    Article  Google Scholar 

  • Vereecke, E. E., D’Août, K., Van Elsacker, L., De Clercq, D., & Aerts, P. (2005). Functional analysis of the gibbon foot during terrestrial bipedal walking: Plantar pressure distributions and three-dimensional ground reaction forces. American Journal of Physical Anthropology, 128, 659–669.

    Article  Google Scholar 

  • Weidenreich, F. (1931). Der primäre Greifcharacter der menschlichen Hände und Füsse und seine Bedeutung für das Abstammungsproblem. Verhandlugen der Gesellschaft für Physische Anthropologie, 5, 97–110.

    Google Scholar 

  • Whitehead, P. F. (1993). Aspects of the anthropoid wrist and hand. In Postcranial adaptation in nonhuman primates (pp. 96–102). Northern Illinois University Press.

    Google Scholar 

  • Wunderlich, R. E. (1999). Pedal form and plantar pressure distribution in anthropoid primates. Stony Brook University.

    Google Scholar 

  • Wunderlich, R. E., & Ford, K. R. (2000). Plantar pressure distribution during bipedal and quadrupedal walking in the chimpanzee (Pan troglodytes). In Proceedings of EMED Scientific Meeting, 19.

    Google Scholar 

  • Wunderlich, R. E., & Ischinger, S. B. (2017). Foot use during vertical climbing in chimpanzees (Pan troglodytes). Journal of Human Evolution, 109, 1–10.

    Article  CAS  Google Scholar 

  • Wunderlich, R. E., Zeininger, A., & Schmitt, D. (2019). Plantar pressure distribution in Gorilla. American Journal of Physical Anthropology, 168, 275.

    Google Scholar 

  • Yalden, D. W. (1972). The form and function of the carpal bones in some arboreally adapted mammals. Acta Anatomica, 82, 383–406.

    Article  CAS  Google Scholar 

  • Zeininger, A., Schmitt, D., & Wunderlich, R. E. (2014). Developmental timing of heel-strike plantigrady in chimpanzees and gorillas. American Journal of Physical Anthropology, 153, 281–282.

    Google Scholar 

  • Zeininger, A., Schmitt, D., & Wunderlich, R. E. (2020). Mechanics of heel-strike plantigrady in African apes. Journal of Human Evolution, 145, 102840. https://doi.org/10.1016/j.jhevol.2020.102840

    Article  Google Scholar 

  • Zeininger, A., Shapiro, L. J., & Raichlen, D. A. (2017). Ontogenetic changes in limb postures and their impact on effective limb length in baboons (Papio cynocephalus). American Journal of Physical Anthropology, 163, 231–241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Zeininger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeininger, A. (2022). Foot Posture During Quadrupedal Walking in Primates. In: Zeininger, A., Hatala, K.G., Wunderlich, R.E., Schmitt, D. (eds) The Evolution of the Primate Foot. Developments in Primatology: Progress and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-031-06436-4_9

Download citation

Publish with us

Policies and ethics