Skip to main content

Primate Foot Use During Bipedal Walking

  • Chapter
  • First Online:
The Evolution of the Primate Foot

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

  • 532 Accesses

Abstract

The foot is the body’s sole point of contact with the substrate during bipedal walking, making it key to understanding the evolution of bipedality in hominins. Although many primate species are capable of some form of facultative bipedalism, humans are the only extant primates that rely on bipedal walking as their primary form of locomotion. The human foot bears many morphological features that distinguish it from the feet of other primates, but determining the adaptive roles of these features requires a comparative perspective of bipedal foot mechanics in non-human primates. This chapter reviews in vivo studies of intrinsic foot joint kinematics, kinetics, and plantar pressure distributions in humans, chimpanzees, bonobos, gibbons, and cercopithecines during bipedal walking, with a special emphasis on aspects of foot function that relate to the collision and push-off phases of a step. Among the non-human primates reviewed, Pan species (chimpanzees and bonobos) possess the feet that are the best suited to efficient terrestrial bipedalism, thanks to their use of the heel in weight support following foot contact, which reduces collisional energy loss and increases effective limb length, and their relatively stiff midfoot joints during push-off. These mechanisms likely derive from adaptations for forelimb suspension and terrestrial quadrupedalism, but they may have been pre-adaptive for bipedal locomotion. The oldest known fossil hominin foot bones resemble those of Pan species in many respects, suggesting that the last common ancestor between humans and African apes had a Pan-like foot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “External work” refers to the amount of work that must be used to move the body’s center of mass to a given distance. During terrestrial locomotion, this work is mainly supplied by the limbs and can be estimated from measurements of ground reaction force at the individual limbs. However, the actual amount of energy used by the body to perform this work, “metabolic energy,” is very difficult to measure empirically, and thus external work is often used as a proxy.

  2. 2.

    “Power” refers here to the rate of work performed by muscles acting on a segment. “Positive” work refers to work performed by a muscle while it is shortening, whereas “negative” work refers to work performed by a muscle while it is lengthening. Thus, “positive power” refers to the rate at which muscles perform work while they are shortening and is usually involved in accelerating the body forward or maintaining the body’s forward velocity.

References

  • Adamczyk, P. G., Collins, S. H., & Kuo, A. D. (2006). The advantages of a rolling foot in human walking. Journal of Experimental Biology, 4, 3953–3963.

    Article  Google Scholar 

  • Adamczyk, P. G., & Kuo, A. D. (2009). Redirection of center-of-mass velocity during the step-to-step transition of human walking. Journal of Experimental Biology, 212, 2668–2678.

    Article  Google Scholar 

  • Adamczyk, P. G., & Kuo, A. D. (2013). Mechanical and energetic consequences of rolling foot shape in human walking. Journal of Experimental Biology, 216, 2722–2731.

    Google Scholar 

  • Bates, K. T., Collins, D., Savage, R., McClymont, J., Webster, E., Pataky, T. C., D’Août, K., Sellers, W. I., Bennett, M. R., & Crompton, R. H. (2013). The evolution of compliance in the human lateral mid-foot. Proceedings of the Royal Society B, 280, 20131818.

    Article  Google Scholar 

  • Bennett, M., & Ker, R. (1990). The mechanical properties of the human subcalcaneal fat pad in compression. Journal of Anatomy, 171, 131–138.

    CAS  Google Scholar 

  • Bennett, M., Ker, R. F., & Alexander, R. M. (1989). Elastic strain energy storage in the feet of running monkeys. Journal of Zoology, 217, 469–475.

    Article  Google Scholar 

  • Bennett, M. R., Harris, J. W. K., Richmond, B. G., Braun, D. R., Mbua, E., Kiura, P., Olago, D., Kibunjia, M., Omuombo, C., Behrensmeyer, A. K., Huddart, D., & Gonzalez, S. (2009). Early hominin foot morphology based on 1.5-million-year-old footprints from Ileret, Kenya. Science, 323, 1197–1201.

    Article  CAS  Google Scholar 

  • Bennett, M. R., Reynolds, S. C., Morse, S. A., & Budka, M. (2016). Laetoli’s lost tracks: 3D generated mean shape and missing footprints. Scientific Reports, 6, 21916.

    Article  CAS  Google Scholar 

  • Berillon, G. (1999). Geometric pattern of the hominoid hallucal tarsometatarsal complex. Quantifying the degree of hallux abduction in early hominids. Comptes Rendus de l’Académie des Sciences, Série IIa, 328, 627–633.

    Google Scholar 

  • Berillon, G., Daver, G., D’Août, K., Nicolas, G., de la Villetanet, B., Multon, F., Digrandi, G., & Dubreuil, G. (2010). Bipedal versus quadrupedal hind limb and foot kinematics in a captive sample of Papio anubis: Setup and preliminary results. International Journal of Primatology, 31, 159–180.

    Article  Google Scholar 

  • Bojsen-Møller, F. (1979). Calcaneocuboid joint and stability of the longitudinal arch of the foot at high and low gear push off. Journal of Anatomy, 129, 165–176.

    Google Scholar 

  • Bruening, D. A., Cooney, K. M., & Buczek, F. L. (2012). Analysis of a kinetic multi-segment foot model part II: Kinetics and clinical implications. Gait & Posture, 35, 535–540.

    Article  Google Scholar 

  • Cannon, C. H., & Leighton, M. (1994). Comparative locomotor ecology of gibbons and macaques: Selection of canopy elements for crossing gaps. American Journal of Physical Anthropology, 93, 505–524.

    Article  CAS  Google Scholar 

  • Caravaggi, P., Pataky, T., Goulermas, J. Y., Savage, R., & Crompton, R. (2009). A dynamic model of the windlass mechanism of the foot: Evidence for early stance phase preloading of the plantar aponeurosis. Journal of Experimental Biology, 212, 2491–2499.

    Article  Google Scholar 

  • Caravaggi, P., Pataky, T., Günther, M., Savage, R., & Crompton, R. (2010). Dynamics of longitudinal arch support in relation to walking speed: Contribution of the plantar aponeurosis. Journal of Anatomy, 217, 254–261.

    Article  Google Scholar 

  • Carvalho, S., Biro, D., Cunha, E., Hockings, K., McGrew, W. C., Richmond, B. G., & Matsuzawa, T. (2012). Chimpanzee carrying behaviour and the origins of human bipedality. Current Biology, 22, R180–R181.

    Article  CAS  Google Scholar 

  • Cavagna, G., Thys, H., & Zamboni, A. (1976). The sources of external work in level walking and running. Journal of Physiology, 262, 639–657.

    Article  CAS  Google Scholar 

  • Chi, K. J., & Schmitt, D. (2005). Mechanical energy and effective foot mass during impact loading of walking and running. Journal of Biomechanics, 38, 1387–1395.

    Article  Google Scholar 

  • Close, J. R., Inman, V. T., Poor, P. M., & Todd, F. N. (1967). The function of the subtalar joint. Clinical Orthopaedics and Related Research, 50, 159–179.

    Article  CAS  Google Scholar 

  • Crompton, R. H., Pataky, T. C., Savage, R., D’Aôut, K., Bennett, M. R., Day, M. H., Bates, K., Morse, S., & Sellers, W. I. (2012). Human-like external function of the foot, and fully upright gait, confirmed in the 3.66 million year old Laetoli hominin footprints by topographic statistics, experimental footprint-formation and computer simulation. Journal of the Royal Society Interface, 9, 707–719.

    Article  Google Scholar 

  • Crompton, R. H., Vereecke, E. E., & Thorpe, S. K. S. (2008). Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. Journal of Anatomy, 212, 501–543.

    Article  CAS  Google Scholar 

  • Cunningham, C., Schilling, N., Anders, C., & Carrier, D. (2010). The influence of foot posture on the cost of transport in humans. Journal of Experimental Biology, 213, 790–797.

    Article  CAS  Google Scholar 

  • Day, M. H., & Napier, J. R. (1964). Fossil foot bones. Nature, 201, 969–970.

    Article  CAS  Google Scholar 

  • Day, M. H., & Wickens, E. (1980). Laetoli Pliocene hominid footprints and bipedalism. Nature, 286, 385–387.

    Article  Google Scholar 

  • Demes, B., Larson, S. G., Stern, J. T., Jungers, W. L., Biknevicius, A. R., & Schmitt, D. (1994). The kinetics of primate quadrupedalism: “hindlimb drive” reconsidered. Journal of Human Evolution, 26, 353–374.

    Article  Google Scholar 

  • Demes, B., Thompson, N. E., O’Neill, M. C., & Umberger, B. R. (2015). Center of mass mechanics of chimpanzee bipedal walking. American Journal of Physical Anthropology, 156, 422–433.

    Article  Google Scholar 

  • DeSilva, J. M. (2009). Functional morphology of the ankle and the likelihood of climbing in early hominins. Proceedings of the National Academy of Sciences USA, 106, 6567–6572.

    Article  CAS  Google Scholar 

  • DeSilva, J. M. (2010). Revisiting the “midtarsal break”. American Journal of Physical Anthropology, 141, 245–258.

    Google Scholar 

  • DeSilva, J. M., Bonne-Annee, R., Swanson, Z., Gill, C. M., Sobel, M., Uy, J., & Gill, S. V. (2015). Midtarsal break variation in modern humans: Functional causes, skeletal correlates, and paleontological implications. American Journal of Physical Anthropology, 156, 543–552.

    Article  CAS  Google Scholar 

  • DeSilva, J. M., Gill, C. M., Prang, T. C., Bredella, M. A., & Alemseged, Z. (2018). A nearly complete foot from Dikika, Ethiopia and its implications for the ontogeny and function of Australopithecus afarensis. Science Advances, 4, eaar7723.

    Article  Google Scholar 

  • Dingwall, H. L., Hatala, K. G., Wunderlich, R. E., & Richmond, B. G. (2013). Hominin stature, body mass, and walking speed estimates based on 1.5 million-year-old fossil footprints at Ileret, Kenya. Journal of Human Evolution, 64, 556–568.

    Article  Google Scholar 

  • Doran, D., & Hunt, K. (1994). Comparative locomotor behavior of chimpanzees and bonobos. In R. W. Wrangham (Ed.), Chimpanzee cultures (pp. 93–108). Harvard University Press.

    Google Scholar 

  • Doran, D. M. (1992). Comparison of instantaneous and locomotor bout sampling methods: A case study of adult male chimpanzee locomotor behavior and substrate use. American Journal of Physical Anthropology, 89, 85–99.

    Article  CAS  Google Scholar 

  • Doran, D. M. (1993). Comparative locomotor behavior of chimpanzees and bonobos: The influence of morphology on locomotion. American Journal of Physical Anthropology, 91, 83–98.

    Article  CAS  Google Scholar 

  • Doran, D. M. (1997). Ontogeny of locomotion in mountain gorillas and chimpanzees. Journal of Human Evolution, 32, 323–344.

    Article  CAS  Google Scholar 

  • Drapeau, M. S. M., & Harmon, E. H. (2013). Metatarsal torsion in monkeys, apes, humans and australopiths. Journal of Human Evolution, 64, 93–108.

    Article  Google Scholar 

  • Elftman, H., & Manter, J. (1935a). Chimpanzee and human feet in bipedal walking. American Journal of Physical Anthropology, 20, 69–79.

    Article  Google Scholar 

  • Elftman, H., & Manter, J. (1935b). The evolution of the human foot, with especial reference to the joints. Journal of Anatomy, 70, 56–67.

    CAS  Google Scholar 

  • Fernández, P. J., Holowka, N. B., Demes, B., & Jungers, W. L. (2016). Form and function of the human and chimpanzee forefoot: Implications for early hominin bipedalism. Scientific Reports, 6, 30532.

    Article  Google Scholar 

  • Fleagle, J. G. (1999). Primate adaptation and evolution (2nd ed.). Academic Press.

    Google Scholar 

  • Fragaszy, D. M., Visalberghi, E., & Fedigan, L. M. (2004). The complete capuchin: The biology of the genus Cebus. Cambridge University Press.

    Google Scholar 

  • Gebo, D. L. (1992). Plantigrady and foot adaptation in African apes: Implications for hominid origins. American Journal of Physical Anthropology, 89, 29–58.

    Article  CAS  Google Scholar 

  • Gefen, A., Megido-Ravid, M., & Itzchak, Y. (2001). In vivo biomechanical behavior of the human heel pad during the stance phase of gait. Journal of Biomechanics, 34, 1661–1665.

    Article  CAS  Google Scholar 

  • Greiner, T. M., & Ball, K. (2014). Kinematics of primate midfoot flexibility. American Journal of Physical Anthropology, 155, 610–620.

    Article  Google Scholar 

  • Griffin, N. L., D’Août, K., Richmond, B., Gordon, A., & Aerts, P. (2010). Comparative in vivo forefoot kinematics of Homo sapiens and Pan paniscus. Journal of Human Evolution, 59, 608–619.

    Article  Google Scholar 

  • Harcourt-Smith, W. E. H., & Aiello, L. C. (2004). Fossils, feet and the evolution of bipedal locomotion. Journal of Anatomy, 204, 403–416.

    Article  CAS  Google Scholar 

  • Hatala, K. G., Demes, B., & Richmond, B. G. (2016). Laetoli footprints reveal bipedal gait biomechanics different from those of modern humans and chimpanzees. Proceedings of the Royal Society B, 283, 20160235.

    Article  Google Scholar 

  • Hatala, K. G., Roach, N. T., Ostrofsky, K. R., Wunderlich, R. E., Dingwall, H. L., Villmoare, B. A., Green, D. J., Harris, J. W. K., Braun, D. R., & Richmond, B. G. (2016). Footprints reveal direct evidence of group behavior and locomotion in Homo erectus. Scientific Reports, 6, 1–9.

    Article  Google Scholar 

  • Hedrick, T. L. (2008). Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspiration & Biomimetics, 3, 34001.

    Article  Google Scholar 

  • Hicks, J. H. (1954). The mechanics of the foot. II. The plantar aponeurosis. Journal of Anatomy, 88, 25–30.

    CAS  Google Scholar 

  • Hirasaki, E., Higurashi, Y., & Kumakura, H. (2010). Brief communication: Dynamic plantar pressure distribution during locomotion in Japanese macaques (Macaca fuscata). American Journal of Physical Anthropology, 142, 149–156.

    Google Scholar 

  • Holowka, N. (2015) Kinematics of the chimpanzee foot during terrestrial and arboreal locomotion. PhD dissertation, Stony Brook University.

    Google Scholar 

  • Holowka, N. B., & O’Neill, M. C. (2013). Three-dimensional moment arms and architecture of chimpanzee (Pan troglodytes) leg musculature. Journal of Anatomy, 223, 610–628.

    Article  Google Scholar 

  • Holowka, N. B., O’Neill, M. C., Thompson, N. E., & Demes, B. (2017a). Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion. American Journal of Physical Anthropology, 164, 131–147.

    Article  Google Scholar 

  • Holowka, N. B., O’Neill, M. C., Thompson, N. E., & Demes, B. (2017b). Chimpanzee and human midfoot motion during bipedal walking and the evolution of the longitudinal arch of the foot. Journal of Human Evolution, 104, 23–31.

    Article  Google Scholar 

  • Hunt, K. D. (1992). Positional behavior of Pan troglodytes in the Mahale Mountains and Gombe Stream National Parks, Tanzania. American Journal of Physical Anthropology, 87, 83–105.

    Article  CAS  Google Scholar 

  • Ishida, H., Kimura, T., & Okada, M. (1974). Patterns of bipedal walking in anthropoid primates. In H. Ishida, T. Kimura, & M. Okada (Eds.), Proceedings from the symposia of the fifth congress of the International Primatological Society (pp. 287–301). Japan Science Press.

    Google Scholar 

  • Ishida, H., Kimura, T., Okada, M., & Yamazaki, N. (1984). Kinesiological aspects of bipedal walking in gibbons. In H. Preuschoft, D. J. Chivers, W. Y. Brockelman, & N. Creel (Eds.), The lesser apes: Evolutionary and behavioral biology (pp. 135–145). Edinburgh University Press.

    Google Scholar 

  • Iwamoto, M. (1985). Bipedalism of Japanese monkeys and carrying models of hominization. In S. Kondo (Ed.), Primate morphophysiology, locomotor analyses and human bipedalism (pp. 251–260). University of Tokyo Press.

    Google Scholar 

  • Jackson, B. E., Evangelista, D. J., Ray, D. D., & Hedrick, T. L. (2016). 3D for the people: Multi-camera motion capture in the field with consumer-grade cameras and open source software. Biology Open, 5(9), 1334–1342.

    Article  Google Scholar 

  • Jastifer, J. R., & Gustafson, P. A. (2014). The subtalar joint: Biomechanics and functional representations in the literature. The Foot, 24(4), 203–209.

    Article  Google Scholar 

  • Jungers, W. L., Meldrum, D. J., & Stern, J. T. (1993). The functional and evolutionary significance of the human peroneus tertius muscle. Journal of Human Evolution, 25, 377–386.

    Article  Google Scholar 

  • Keith, A. (1929). The history of the human foot and its bearing on orthopaedic practice. Journal of Bone and Joint Surgery, 11, 10–32.

    Google Scholar 

  • Kelly, L., Cresswell, A. G., Racinais, S., Whiteley, R., & Lichtwark, G. (2014). Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch. Journal of the Royal Society Interface, 11, 20131188.

    Article  Google Scholar 

  • Kelly, L. A., Lichtwark, G., Cresswell, A. G., & Cresswell, A. G. (2015). Active regulation of longitudinal arch compression and recoil during walking and running. Journal of the Royal Society Interface, 12, 20141076.

    Article  Google Scholar 

  • Ker, R. F., Bennett, M. B., Bibby, S. R., Kester, R. C., & Alexander, R. M. (1987). The spring in the arch of the human foot. Nature, 325, 147–149.

    Article  CAS  Google Scholar 

  • Kimura, T. (1985). Bipedal and quadrupedal walking of primates: Comparative dynamics. In S. Kondo (Ed.), Primate morphophysiology, locomotor analyses and human bipedalism (pp. 81–104). University of Tokyo Press.

    Google Scholar 

  • Kimura, T., Okada, M., & Ishida, H. (1979). Kinesiological characteristics of primate walking: Its significance in human walking. In M. E. Morbeck, H. Preuschoft, & N. Gomberg (Eds.), Environment, behavior and morphology: Dynamic interactions in primates (pp. 297–311). G. Fischer.

    Google Scholar 

  • Kuo, A. D., Donelan, J. M., & Ruina, A. (2005). Energetic consequences of walking like an inverted pendulum: Step-to-step transitions. Exercise and Sport Sciences Reviews, 33, 88–97.

    Article  Google Scholar 

  • Lapidus, P. W. (1963). Kinesiology and mechanical anatomy of the tarsal joints. Clinical Orthopaedics and Related Research, 30, 20–36.

    Article  CAS  Google Scholar 

  • Latimer, B., & Lovejoy, C. O. (1989). The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality. American Journal of Physical Anthropology, 78, 369–386.

    Article  CAS  Google Scholar 

  • Latimer, B., & Lovejoy, C. O. (1990). Hallucal tarsometatarsal joint in Australopithecus afarensis. American Journal of Physical Anthropology, 82, 125–133.

    Article  CAS  Google Scholar 

  • Latimer, B., Ohman, J. C., & Lovejoy, C. O. (1987). Talocrural joint in African hominoids: Implications for Australopithecus afarensis. American Journal of Physical Anthropology, 74, 155–175.

    Article  CAS  Google Scholar 

  • Leardini, A., Benedetti, M. G., Berti, L., Bettinelli, D., Nativo, R., & Giannini, S. (2007). Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait & Posture, 25, 453–462.

    Article  CAS  Google Scholar 

  • Lewis, O. J. (1980a). The joints of the evolving foot. Part II. The intrinsic joints. Journal of Anatomy, 130, 833–857.

    CAS  Google Scholar 

  • Lewis, O. J. (1980b). The joints of the evolving foot. Part I. The ankle joint. Journal of Anatomy, 130, 527–543.

    CAS  Google Scholar 

  • Loth, V. (1908). Die aponeurosis plantaris in der primatenreihe. Gegenbaurs Morphologische Jahrbuch, 38, 194–322.

    Google Scholar 

  • Lovejoy, C. O., Latimer, B., Suwa, G., Asfaw, B., & White, T. D. (2009). Combining prehension and propulsion: The foot of Ardipithecus ramidus. Science, 326, 72e1–e8.

    Article  Google Scholar 

  • Lundgren, P., Nester, C., Liu, A., Arndt, A., Jones, R., Stacoff, A., Wolf, P., & Lundberg, A. (2008). Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. Gait & Posture, 28, 93–100.

    Article  CAS  Google Scholar 

  • Machnicki, A. L., Spurlock, L. B., Strier, K. B., Reno, P. L., & Lovejoy, C. O. (2016). First steps of bipedality in hominids: Evidence from the atelid and proconsulid pelvis. PeerJ, 4, e1521.

    Article  Google Scholar 

  • MacWilliams, B. A., Cowley, M., & Nicholson, D. E. (2003). Foot kinematics and kinetics during adolescent gait. Gait & Posture, 17, 214–224.

    Article  Google Scholar 

  • Maharaj, J. N., Cresswell, A. G., & Lichtwark, G. A. (2017). The mechanical function of the tibialis posterior muscle and its tendon during locomotion. Journal of Biomechanics, 49, 3238–3243.

    Article  Google Scholar 

  • Mann, R. A., & Inman, V. T. (1964). Phasic activity of the intrinsic muscles of the foot. Journal of Bone and Joint Surgery, 46, 469–481.

    Article  CAS  Google Scholar 

  • Masao, F. T., Ichumbaki, E. B., Cherin, M., Barili, A., Boschian, G., Iurino, D. A., Menconero, S., Moggi-Cecchi, J., & Manzi, G. (2016). New footprints from Laetoli (Tanzania) provide evidence for marked body size variation in early hominins. eLife, 5, 29.

    Article  Google Scholar 

  • Meldrum, D. J. (1991). Kinematics of the cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of hominid terrestrial adaptations. American Journal of Physical Anthropology, 84, 273–289.

    Article  CAS  Google Scholar 

  • Moorjani, P., Amorim, C. E. G., Arndt, P. F., & Przeworski, M. (2016). Variation in the molecular clock of primates. Proceedings of the National Academy of Sciences USA, 113, 10607–10612.

    Article  CAS  Google Scholar 

  • Morton, D. J. (1922). Evolution of the human foot. American Journal of Physical Anthropology, 5, 305–332.

    Article  Google Scholar 

  • Morton, D. J. (1924). Evolution of the human foot II. American Journal of Physical Anthropology, 7, 1–52.

    Article  Google Scholar 

  • Mosca, V. S. (2010). Flexible flatfoot in children and adolescents. Journal of Children’s Orthopaedics, 4, 107–121.

    Article  Google Scholar 

  • Murley, G. S., Menz, H. B., & Landorf, K. B. (2009). Foot posture influences the electromyographic activity of selected lower limb muscles during gait. Journal of Foot and Ankle Research, 2, 35.

    Article  Google Scholar 

  • O’Neill, M. C., Lee, L. F., Demes, B., Thompson, N. E., Larson, S. G., Stern, J. T., & Umberger, B. R. (2015). Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee (Pan troglodytes) and human bipedal walking. Journal of Human Evolution, 86, 32–42.

    Article  Google Scholar 

  • O’Neill, M. C., Demes, B., Thompson, N. E., & Umberger, B. R. (2018). Three-dimensional kinematics and the origin of the hominin walking stride. Journal of The Royal Society Interface, 15(145), 20180205. https://doi.org/10.1098/rsif.2018.0205

  • O’Neill, M. C., Demes, B., Thompson, N. E., Larson, S. G., Stern, J. T., & Umberger, B. R. (2022). Adaptations for bipedal walking: Musculoskeletal structure and three-dimensional joint mechanics of humans and bipedal chimpanzees (Pan troglodytes). Journal of Human Evolution, 168103195. https://doi.org/10.1016/j.jhevol.2022.103195

  • Ogihara, N., Makishima, H., & Nakatsukasa, M. (2010). Three-dimensional musculoskeletal kinematics during bipedal locomotion in the Japanese macaque, reconstructed based on an anatomical model-matching method. Journal of Human Evolution, 58, 252–261.

    Article  Google Scholar 

  • Okada, M. (1985). Primate bipedal walking: Comparative kinematics. In S. Kondo (Ed.), Primate morphophysiology, locomotor analyses and human bipedalism (pp. 47–58). University of Tokyo Press.

    Google Scholar 

  • Pain, M. T. G., & Challis, J. H. (2001). The role of the heel pad and shank soft tissue during impacts: A further resolution of a paradox. Journal of Biomechanics, 34, 327–333.

    Article  CAS  Google Scholar 

  • Pontzer, H. (2007). Predicting the energy cost of terrestrial locomotion: A test of the LiMb model in humans and quadrupeds. Journal of Experimental Biology, 210, 484–494.

    Article  Google Scholar 

  • Pontzer, H., Raichlen, D. A., & Rodman, P. S. (2014). Bipedal and quadrupedal locomotion in chimpanzees. Journal of Human Evolution, 66, 64–82.

    Article  Google Scholar 

  • Pontzer, H., Rolian, C., Rightmire, G. P., Jashashvili, T., Ponce de León, M. S., Lordkipanidze, D., & Zollikofer, C. P. E. (2010). Locomotor anatomy and biomechanics of the Dmanisi hominins. Journal of Human Evolution, 58, 492–504.

    Article  Google Scholar 

  • Prang, T. C. (2015). Calcaneal robusticity in Plio-Pleistocene hominins: Implications for locomotor diversity and phylogeny. Journal of Human Evolution, 80, 135–146.

    Article  Google Scholar 

  • Proctor, D. J. (2010). Brief communication: Shape analysis of the MT 1 proximal articular surface in fossil hominins and shod and unshod Homo. American Journal of Physical Anthropology, 143, 631–637.

    Article  Google Scholar 

  • Proctor, D. J., Broadfield, D., & Proctor, K. (2008). Quantitative three-dimensional shape analysis of the proximal hallucial metatarsal articular surface in Homo, Pan, Gorilla, and Hylobates. American Journal of Physical Anthropology, 135, 216–224.

    Article  Google Scholar 

  • Raichlen, D., & Gordon, A. (2017). Interpretation of footprints from Site S confirms human-like bipedal biomechanics in Laetoli hominins. Journal of Human Evolution, 107, 134–138.

    Article  Google Scholar 

  • Raichlen, D. A., Gordon, A. D., Harcourt-Smith, W. E. H., Foster, A. D., & Haas, W. R. (2010). Laetoli footprints preserve earliest direct evidence of human-like bipedal biomechanics. PLoS One, 5, 1–6.

    Article  Google Scholar 

  • Raven, H. C. (1936). Comparative anatomy of the sole of the foot. American Museum Novitates, 871, 1–9.

    Google Scholar 

  • Reeser, L. A., Susman, R. L., & Stern, J. T. (1983). Electromyographic studies of the human foot: Experimental approaches to hominid evolution. Foot & Ankle, 3, 391–407.

    Article  CAS  Google Scholar 

  • Reynolds, T. R. (1985a). Mechanics of increased support of weight by the hindlimbs in primates. American Journal of Physical Anthropology, 67, 335–349.

    Article  CAS  Google Scholar 

  • Reynolds, T. R. (1985b). Stresses on the limbs of quadrupedal primates. American Journal of Physical Anthropology, 67, 351–362.

    Article  CAS  Google Scholar 

  • Rolian, C., Lieberman, D. E., Hamill, J., Scott, J. W., & Werbel, W. (2009). Walking, running and the evolution of short toes in humans. Journal of Experimental Biology, 212, 713–721.

    Article  Google Scholar 

  • Rose, M. D. (1976). Bipedal behavior of olive baboons (Papio anubis) and its relevance to an understanding of the evolution of human bipedalism. American Journal of Physical Anthropology, 44, 247–261.

    Article  CAS  Google Scholar 

  • Sargis, E. J., Boyer, D. M., Bloch, J. I., & Silcox, M. T. (2007). Evolution of pedal grasping in primates. Journal of Human Evolution, 53, 103–107.

    Article  Google Scholar 

  • Sarmiento, E. E. (1983). The significance of the heel process in anthropoids. International Journal of Primatology, 4, 127–152.

    Article  Google Scholar 

  • Sarrafian, S. K. (1987). Functional characteristics of the foot and plantar aponeurosis under tibiotalar loading. Foot & Ankle, 8, 4–18.

    Article  CAS  Google Scholar 

  • Sarringhaus, L. A., MacLatchy, L. M., & Mitani, J. C. (2014). Locomotor and postural development of wild chimpanzees. Journal of Human Evolution, 66, 29–38.

    Article  CAS  Google Scholar 

  • Saunders, M., Inman, V., & Eberhart, H. (1953). The major determinant in normal and pathological gait. Journal of Bone and Joint Surgery, 35, 543–558.

    Article  Google Scholar 

  • Schmitt, D., & Larson, S. G. (1995). Heel contact as a function of substrate type and speed in primates. American Journal of Physical Anthropology, 96, 39–50.

    Article  CAS  Google Scholar 

  • Schultz, A. H. (1963). Relations between the lengths of the main parts of the foot skeleton in primates. Folia Primatologica, 1, 150–171.

    Article  Google Scholar 

  • Scott, S. H., & Winter, D. A. (1993). Biomechanical model of the human foot: Kinematics and kinetics during the stance phase of walking. Journal of Biomechanics, 26, 1091–1104.

    Article  CAS  Google Scholar 

  • Sellers, W. I., & Hirasaki, E. (2014). Markerless 3D motion capture for animal locomotion studies. Biology Open, 3, 656–668.

    Article  Google Scholar 

  • Simkin, A., Leichter, I., Giladi, M., Stein, M., & Milgrom, C. (1989). Combined effect of foot arch structure and an orthotic device on stress fractures. Foot & Ankle, 10, 25–29.

    Article  CAS  Google Scholar 

  • Sockol, M. D., Raichlen, D. A., & Pontzer, H. (2007). Chimpanzee locomotor energetics and the origin of human bipedalism. Proceedings of the National Academy of Sciences USA, 104, 12265–12269.

    Article  CAS  Google Scholar 

  • Susman, R. L. (1983). Evolution of the human foot: Evidence from Plio-Pleistocene hominids. Foot & Ankle, 3, 365–376.

    Article  CAS  Google Scholar 

  • Susman, R. L., & Stern, J. T. (1982). Functional morphology of Homo habilis. Science, 217, 931–934.

    Article  CAS  Google Scholar 

  • Swindler, D. R., & Wood, C. D. (1973). An atlas of primate gross anatomy. University of Washington Press.

    Google Scholar 

  • Takahashi, K. Z., Worster, K., & Bruening, D. A. (2017). Energy neutral: The human foot and ankle subsections combine to produce near zero net mechanical work during walking. Scientific Reports, 7, 15404.

    Article  Google Scholar 

  • Thorpe, S., Holder, R., & Crompton, R. (2007). Origin of human bipedalism as an adaptation for locomotion on flexible branches. Science, 316, 1328–1331.

    Article  CAS  Google Scholar 

  • Tweed, J. L., Campbell, J. A., Thompson, R. J., & Curran, M. J. (2008). The function of the midtarsal joint. A review of the literature. The Foot, 18, 106–112.

    Article  CAS  Google Scholar 

  • Umberger, B. R. (2010). Stance and swing phase costs in human walking. Journal of the Royal Society Interface, 7, 1329–1340.

    Article  Google Scholar 

  • Usherwood, J., Channon, A., Myatt, J., Rankin, J., & Hubel, T. (2012). The human foot and heel–sole–toe walking strategy: A mechanism enabling an inverted pendular gait with low isometric muscle force? Journal of the Royal Society Interface, 9, 2396–2402.

    Article  CAS  Google Scholar 

  • Venkadesan, M., Yawar, A., Eng, C. M., Dias, M. A., Singh, D. K., Tommasini, S. M., Haims, A. H., Bandi, M. M., & Mandre, S. (2020) Stiffness of the human foot and evolution of the transverse arch. Nature, 579(7797), 97–100. https://doi.org/10.1038/s41586-020-2053-y

  • Vereecke, E., D’Août, K., De Clercq, D., Van Elsacker, L., & Aerts, P. (2003). Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus). American Journal of Physical Anthropology, 120, 373–383.

    Article  Google Scholar 

  • Vereecke, E., D’Août, K., Van Elsacker, L., De Clercq, D., & Aerts, P. (2005). Functional analysis of the gibbon foot during terrestrial bipedal walking: Plantar pressure distributions and three-dimensional ground reaction forces. American Journal of Physical Anthropology, 128, 659–669.

    Article  Google Scholar 

  • Vereecke, E. E., & Aerts, P. (2008). The mechanics of the gibbon foot and its potential for elastic energy storage during bipedalism. Journal of Experimental Biology, 211, 3661–3670.

    Article  Google Scholar 

  • Vereecke, E. E., D’Août, K., & Aerts, P. (2006). The dynamics of hylobatid bipedalism: Evidence for an energy-saving mechanism? Journal of Experimental Biology, 209, 2829–2838.

    Article  Google Scholar 

  • Vereecke, E. E., D’Août, K., Payne, R., & Aerts, P. (2005). Functional analysis of the foot and ankle myology of gibbons and bonobos. Journal of Anatomy, 206, 453–476.

    Article  Google Scholar 

  • Ward, C. V., Kimbel, W. H., & Johanson, D. C. (2011). Complete fourth metatarsal and arches in the foot of Australopithecus afarensis. Science, 331, 750–753.

    Article  CAS  Google Scholar 

  • Webber, J. T., & Raichlen, D. A. (2016). The role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot. Journal of Experimental Biology, 219, 3729–3737.

    Article  Google Scholar 

  • Weidenreich, F. (1923). Evolution of the human foot. American Journal of Physical Anthropology, 6, 1–10.

    Article  Google Scholar 

  • White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P., & Suwa, G. (2015). Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proceedings of the National Academy of Sciences USA, 112, 4877–4884.

    Article  CAS  Google Scholar 

  • Whittle, M. W. (1999). Generation and attenuation of transient impulsive forces beneath the foot: A review. Gait & Posture, 10, 264–275.

    Article  CAS  Google Scholar 

  • Winter, D., Eng, J., & Ishac, M. (1996). Three-dimensional moments, powers and work in normal gait: Implications for clinical assessments. In G. F. Harris & P. A. Smith (Eds.), Human motion analysis: Current applications (pp. 71–83). IEEE Press.

    Google Scholar 

  • Wood Jones, F. (1917). The arboreal man. Hafner Publishing Company.

    Google Scholar 

  • Wrangham, R. W. (1980). Bipedal locomotion as a feeding adaptation in gelada baboons and its implications for hominid evolution. Journal of Human Evolution, 9, 329–331.

    Article  Google Scholar 

  • Wunderlich, R. E., & Schaum, J. C. (2007). Kinematics of bipedalism in Propithecus verreauxi. Journal of Zoology, 272, 165–175.

    Article  Google Scholar 

  • Yamazaki, N. (1985). Primate bipedal walking: Computer simulation. In S. Kondo (Ed.), Primate morphophysiology, locomotor analyses and human bipedalism (pp. 105–130). University of Tokyo Press.

    Google Scholar 

  • Yamazaki, N., Ishida, H., Kimura, T., & Okada, M. (1979). Biomechanical analysis of primate bipedal walking by computer simulation. Journal of Human Evolution, 8, 337–349.

    Article  Google Scholar 

  • Zadpoor, A. A., & Nikooyan, A. A. (2011). The relationship between lower-extremity stress fractures and the ground reaction force: A systematic review. Clinical Biomechanics, 26, 23–28.

    Article  Google Scholar 

  • Zelik, K. E., & Adamczyk, P. G. (2016). A unified perspective on ankle push-off in human walking. Journal of Experimental Biology, 219, 3676–3683.

    Article  Google Scholar 

  • Zelik, K. E., & Honert, E. C. (2018). Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment. Journal of Biomechanics, 75, 1–12.

    Article  Google Scholar 

  • Zelik, K. E., & Kuo, A. D. (2010). Human walking isn’t all hard work: Evidence of soft tissue contributions to energy dissipation and return. Journal of Experimental Biology, 213, 4257–4264.

    Article  Google Scholar 

  • Zelik, K. E., Takahashi, K. Z., & Sawicki, G. S. (2015). Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking. Journal of Experimental Biology, 218, 876–886.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas B. Holowka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holowka, N.B. (2022). Primate Foot Use During Bipedal Walking. In: Zeininger, A., Hatala, K.G., Wunderlich, R.E., Schmitt, D. (eds) The Evolution of the Primate Foot. Developments in Primatology: Progress and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-031-06436-4_10

Download citation

Publish with us

Policies and ethics