Skip to main content

Out-of-Distribution Detection Using Outlier Detection Methods

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13233))

Included in the following conference series:

  • 1248 Accesses

Abstract

Out-of-distribution detection (OOD) deals with anomalous input to neural networks. In the past, specialized methods have been proposed to identify anomalous input. Similarly, it was shown that feature extraction models in combination with outlier detection algorithms are well suited to detect anomalous input. We use outlier detection algorithms to detect anomalous input as reliable as specialized methods from the field of OOD. No neural network adaptation is required; detection is based on the model’s softmax score. Our approach works unsupervised using an Isolation Forest and can be further improved by using a supervised learning method such as Gradient Boosting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Previously published work in the area of OOD often uses the Tiny Images dataset [22] to calibrate the models. This dataset has been withdrawn by the authors [21]. Instead, we use the Food101 [14] dataset to train outlier exposure models and the Gradient Boosting classifier.

  2. 2.

    https://github.com/jandiers/ood-detection.

References

  1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete Problems in AI Safety (2016)

    Google Scholar 

  2. Bergman, L., Cohen, N., Hoshen, Y.: Deep Nearest Neighbor Anomaly Detection (2020)

    Google Scholar 

  3. Chen, J., Li, Y., Wu, X., Liang, Y., Jha, S.: Robust out-of-distribution detection for neural networks. https://arxiv.org/pdf/2003.09711

  4. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330 (2017). http://proceedings.mlr.press/v70/guo17a.html

  5. DeVries, T., Taylor, G.W.: Learning Confidence for Out-of-Distribution Detection in Neural Networks (2018)

    Google Scholar 

  6. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002). https://doi.org/10.1016/S0167-9473(01)00065-2. https://www.sciencedirect.com/science/article/pii/S0167947301000652

  7. Hawkins, D.M.: Identification of Outliers, vol. 11. Chapman and Hall, London (1980). https://link.springer.com/content/pdf/10.1007/978-94-015-3994-4.pdf

  8. Hendrycks, D., Gimpel, K.: A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks (2016)

    Google Scholar 

  9. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep Anomaly Detection with Outlier Exposure (2018)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. https://arxiv.org/pdf/1412.6980

  11. Zhang, K., Schölkopf, B., Muandet, K., Wang, Z.: Domain adaptation under target and conditional shift. In: International Conference on Machine Learning, pp. 819–827 (2013). http://proceedings.mlr.press/v28/zhang13d.html

  12. Liang, S., Li, Y., Srikant, R.: Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks (2017)

    Google Scholar 

  13. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: Giannotti, F. (ed.) Eighth IEEE International Conference on Data Mining, 2008. IEEE, Piscataway (2008). https://doi.org/10.1109/icdm.2008.17

  14. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  15. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: Dzeroski, S. (ed.) Proceedings of the 22nd International Conference on Machine Learning. ACM, New York (2005). https://doi.org/10.1145/1102351.1102430

  16. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. https://arxiv.org/pdf/1906.02845

  17. Ruff, L., Vandermeulen, R.A., Franks, B.J., Müller, K.R., Kloft, M.: Rethinking assumptions in deep anomaly detection. https://arxiv.org/pdf/2006.00339

  18. Sun, Y., Guo, C., Li, Y.: React: out-of-distribution detection with rectified activations. arXiv abs/2111.12797 (2021)

    Google Scholar 

  19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 29th IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Piscataway (2016). https://doi.org/10.1109/cvpr.2016.308

  20. Tan, M., Le, V.Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning (2019). https://arxiv.org/pdf/1905.11946

  21. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images (01072020). https://groups.csail.mit.edu/vision/TinyImages/

  22. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1958–1970 (2008). https://doi.org/10.1109/tpami.2008.128

    Article  Google Scholar 

  23. Wang, H., Bah, M.J., Hammad, M.: Progress in outlier detection techniques: a survey. IEEE Access 7, 107964–108000 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Diers .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 350 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diers, J., Pigorsch, C. (2022). Out-of-Distribution Detection Using Outlier Detection Methods. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13233. Springer, Cham. https://doi.org/10.1007/978-3-031-06433-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06433-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06432-6

  • Online ISBN: 978-3-031-06433-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics