Skip to main content

A Deep Learning Based Framework for Malaria Diagnosis on High Variation Data Set

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13232))

Included in the following conference series:

Abstract

Malaria is a globally widespread disease caused by parasitic protozoa transmitted by infected female Anopheles mosquitoes. It is caused in humans only by the parasite Plasmodium, further classified into four different species. Identifying malaria parasites is possible by analyzing digital microscopic blood smears, which is tedious, time-consuming, and error-prone. Therefore, automation of the process has assumed great importance as it helps the laborious manual process of review and diagnosis. This work proposes a real-time malaria parasite detector and classification system after studying the YOLOv5 detector and comparing different off-the-shelf convolutional neural network architectures for four-class classification on Plasmodium Falciparum life stages. The results show that the use of the networks YOLOv5 and DarkNet-53 reaches great accuracy in detecting and classifying the life stages of Plasmodium Falciparum, achieving an accuracy of 95.2% and 96.02%, respectively, and outperforming the state-of-art. The obtained results enable broad improvements geared explicitly towards recognizing types and life stages of less common species of malaria parasites, even in mobile environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at: https://github.com/ultralytics/yolov5.

References

  1. Abdurahman, F., Fante, K.A., Aliy, M.: Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models. BMC Bioinform. 22(1), 112 (2021)

    Article  Google Scholar 

  2. Jocher, G., et al.: ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 models, April 2021. https://doi.org/10.5281/zenodo.4679653

  3. Bias, S., Reni, S., Kale, I.: Mobile hardware based implementation of a novel, efficient, fuzzy logic inspired edge detection technique for analysis of malaria infected microscopic thin blood images. Proc. Comput. Sci. 141, 374–381 (2018)

    Article  Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  5. Di Ruberto, C., Loddo, A., Puglisi, G.: Blob detection and deep learning for leukemic blood image analysis. Appli. Sci. 10(3), 1176 (2020)

    Article  Google Scholar 

  6. Di Ruberto, C., Loddo, A., Putzu, L.: Detection of red and white blood cells from microscopic blood images using a region proposal approach. Comput. Biol. Med. 116, 103530 (2020)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 770–778 (2016)

    Google Scholar 

  8. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 (2016)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceeding of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105 (2012)

    Google Scholar 

  10. Liang, Z., et al.: CNN-based image analysis for malaria diagnosis. In: IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016, Shenzhen, China, 15–18 December, pp. 493–496. IEEE Computer Society (2016)

    Google Scholar 

  11. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Loddo, A., Di Ruberto, C., Kocher, M.: Recent advances of malaria parasites detection systems based on mathematical morphology. Sensors 18(2), 513 (2018)

    Article  Google Scholar 

  13. Loddo, A., Di Ruberto, C., Kocher, M., Prod’Hom, G.: MP-IDB: the malaria parasite image database for image processing and analysis. In: Lepore, N., Brieva, J., Romero, E., Racoceanu, D., Joskowicz, L. (eds.) SaMBa 2018. LNCS, vol. 11379, pp. 57–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13835-6_7

    Chapter  Google Scholar 

  14. Maity, M., Jaiswal, A., Gantait, K., Chatterjee, J., Mukherjee, A.: Quantification of malaria parasitaemia using trainable semantic segmentation and capsnet. Pattern Recognit. Lett. 138, 88–94 (2020)

    Article  Google Scholar 

  15. Mikołajczyk, A., Grochowski, M.: Data augmentation for improving deep learning in image classification problem. In: 2018 International Interdisciplinary PhD Workshop, IIPhDW, pp. 117–122 (2018)

    Google Scholar 

  16. Moody, A.: Rapid diagnostic tests for malaria parasites. Clin. Microbiol. Rev. 15(1), 66–78 (2002)

    Article  MathSciNet  Google Scholar 

  17. Nanni, L., Ghidoni, S., Brahnam, S.: Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recogn. 71, 158–172 (2017)

    Article  Google Scholar 

  18. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/malaria (2021). Accessed 13 Sept 2021

  19. Poostchi, M., Silamut, K., Maude, R.J., Jaeger, S., Thoma, G.: Image analysis and machine learning for detecting malaria. Transl. Res. 194, 36–55 (2018); in-Depth Review: Diagnostic Medical Imaging

    Google Scholar 

  20. Rahman, A., Zunair, H., Reme, T.R., Rahman, M.S., Mahdy, M.: A comparative analysis of deep learning architectures on high variation malaria parasite classification dataset. Tissue Cell 69, 101473 (2021)

    Article  Google Scholar 

  21. Rajaraman, S., Jaeger, S., Antani, S.K.: Perf. eval. of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ 7, e6977 (2019)

    Article  Google Scholar 

  22. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 779–788 (2016)

    Google Scholar 

  23. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR abs/1804.02767 (2018)

    Google Scholar 

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  25. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June, pp. 4510–4520. IEEE Computer Society (2018)

    Google Scholar 

  26. Shin, H., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May, Conference Track Proceedings (2015)

    Google Scholar 

  28. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–9 (2015)

    Google Scholar 

  29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  30. Vogado, L.H., Veras, R.M., Araujo, F.H., Silva, R.R., Aires, K.R.: Leukemia diagnosis in blood slides using transfer learning in CNNS and SVM for classification. Eng. Appl. Artif. Intell. 72, 415–422 (2018)

    Article  Google Scholar 

  31. Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting and detection with fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 6(3), 283–292 (2018)

    Article  Google Scholar 

  32. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June, pp. 6848–6856. IEEE Computer Society (2018)

    Google Scholar 

  33. Zhu, X., Lyu, S., Wang, X., Zhao, Q.: Tph-yolov5: improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, ICCV Workshops, pp. 2778–2788, October 2021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Loddo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zedda, L., Loddo, A., Di Ruberto, C. (2022). A Deep Learning Based Framework for Malaria Diagnosis on High Variation Data Set. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06430-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06429-6

  • Online ISBN: 978-3-031-06430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics