Skip to main content

Morphological Galaxies Classification According to Hubble-de Vaucouleurs Diagram Using CNNs

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

Galaxies morphology classification is a crucial task for studying their physical properties, formation and evolutionary histories. The large-scale surveys on universe has boosted the need to develop techniques for automated galaxies morphological classification. This paper proposes a system able to classify automatically galaxies according to the Hubble De Vaucouleurs diagram. We introduce a novel CNN architectures that for the first time was trained to automatically classify galaxies according to 26-classes Hubble-De Vaucouleurs scheme. We use Galaxy Zoo dataset, using the decision tree, to extract a labeled examples containing an even amount of images of each 26-classes. We also compared different CNN Backbones in order to assess obtained galaxies classification results. We obtain a balanced multi-class accuracy (BCA) of more than 80% in classifying all 26 Hubble-De Vaucouleurs galaxy categories.

The authors thank Arturo Argentieri for his technical support in the setup of the hardware used for network training and data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, S., Aniyan, A.K., Kembhavi, A.K., Philip, N.S., Vaghmare, K.: Detection of bars in galaxies using a deep convolutional neural network. Monthly Notices Royal Astron. Soc. 477(1), 894–903 (2018). https://doi.org/10.1093/mnras/sty627

  2. Baqui, P.O., et al.: The minijpas survey: star-galaxy classification using machine learning. Astron. Astrophys. 645, A87 (2021). https://doi.org/10.1051/0004-6361/202038986

    Article  Google Scholar 

  3. Barchi, P., et al.: Machine and deep learning applied to galaxy morphology - a comparative study. Astron. Comput. 30, 100334 (2020). https://doi.org/10.1016/j.ascom.2019.100334

    Article  Google Scholar 

  4. Baron, D.: Machine learning in astronomy: a practical overview (2019)

    Google Scholar 

  5. Beck, M.R., et al.: Integrating human and machine intelligence in galaxy morphology classification tasks. Mon. Not. R. Astron. Soc. 476(4), 5516–5534 (2018). https://doi.org/10.1093/mnras/sty503

    Article  Google Scholar 

  6. Buta, R.J.: Galaxy morphology. In: Oswalt, T.D., Keel, W.C. (eds.) Planets, Stars and Stellar Systems Volume 6: Extragalactic Astronomy and Cosmology, chap. 1, pp. 1–90. Springer, Oxford (2013)

    Google Scholar 

  7. Cavanagh, M.K., Bekki, K., Groves, B.A.: Morphological classification of galaxies with deep learning: comparing 3-way and 4-way CNNs. Mon. Not. R. Astron. Soc. 506(1), 659–676, 100334 (2021). https://doi.org/10.1093/mnras/stab1552

  8. Cheng, T.Y., et al.: Optimizing automatic morphological classification of galaxies with machine learning and deep learning using dark energy survey imaging. Mon. Not. R. Astron. Soc. 493(3), 4209–4228, 100334 (2020). https://doi.org/10.1093/mnras/staa501

  9. Conselice, C.J.: The evolution of galaxy structure over cosmic time. Ann. Rev. Astron. Astrophys. 52(1), 291–337 (2014). https://doi.org/10.1146/annurev-astro-081913-040037

    Article  Google Scholar 

  10. De La Calleja, J., Fuentes, O.: Machine learning and image analysis for morphological galaxy classification. Monthly Notices Roy. Astrono. Soc. 349(1), 87–93 (2004). https://doi.org/10.1111/j.1365-2966.2004.07442.x

  11. De Vaucouleurs, G.: Classification and Morphology of External Galaxies, pp. 275–310. Springer, Heidelberg (1959). https://doi.org/10.1007/978-3-642-45932-0-7

  12. Dieleman, S., Willett, K.W., Dambre, J.: Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. R. Astron. Soc. 450(2), 1441–1459 (2015). https://doi.org/10.1093/mnras/stv632

    Article  Google Scholar 

  13. Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D., Fischer, J.L.: Improving galaxy morphologies for SDSS with deep learning. Mon. Not. R. Astron. Soc. 476(3), 3661–3676, 100334 (2018). https://doi.org/10.1093/mnras/sty338

  14. Ghosh, A., Urry, C.M., Wang, Z., Schawinski, K., Turp, D., Powell, M.C.: Galaxy morphology network: a convolutional neural network used to study morphology and quenching in 100,000 sdss and 20,000 candels galaxies. Astrophysical J. 895(2), 112 (2020). https://doi.org/10.3847/1538-4357/ab8a47

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  16. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks, pp. 2261–2269 (2017)

    Google Scholar 

  17. Kaggle: Galaxy zoo - the galaxy challenge: Classify the morphologies of distant galaxies in our universe. https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge/data

  18. Kennicutt, R.C.: Star formation in galaxies along the hubble sequence. Ann. Rev. Astron. Astrophys. 36(1), 189–231 (1998). https://doi.org/10.1146/annurev.astro.36.1.189

    Article  Google Scholar 

  19. Lintott, C.J., et al.: Galaxy zoo: morphologies derived from visual inspection of galaxies from the sloan digital sky survey. Monthly Notices Roy. Astron. Soc. 389(3), 1179–1189 (2008). https://doi.org/10.1111/j.1365-2966.2008.13689.x

  20. Mihos, J.C., Hernquist, L.: Gasdynamics and starbursts in major mergers. Astrophys J 464, 641 (1996). https://doi.org/10.1086/177353

    Article  Google Scholar 

  21. Mustafa, M., Bard, D., Bhimji, W., Lukić, Z., Al-Rfou, R., Kratochvil, J.M.: CosmoGAN: creating high-fidelity weak lensing convergence maps using Generative Adversarial Networks. Computational Astrophysics and Cosmology 6(1), 1–13 (2019). https://doi.org/10.1186/s40668-019-0029-9

    Article  Google Scholar 

  22. Méndez-Abreu, J., Ruiz-Lara, T., Sánchez-Menguiano, L., de Lorenzo-Cáceres, A., Costantin, L., Catalán-Torrecilla, C., Florido, E., Aguerri, J.A.L., Bland-Hawthorn, J., Corsini, E.M., et al.: Two-dimensional multi-component photometric decomposition of califa galaxies. Astronomy & Astrophysics 598, A32 (2017). https://doi.org/10.1051/0004-6361/201629525

    Article  Google Scholar 

  23. Ntampaka, M., Eisenstein, D.J., Yuan, S., Garrison, L.H.: A hybrid deep learning approach to cosmological constraints from galaxy redshift surveys. Astrophys. J. 889(2), 151, 100334 (2020). https://doi.org/10.3847/1538-4357/ab5f5e

  24. Odewahn, S.C., Cohen, S.H., Windhorst, R.A., Philip, N.S.: Automated galaxy morphology: a fourier approach. Astrophys. J. 568(2), 539–557 (2002). https://doi.org/10.1086/339036

  25. Pasquet-Itam, J., Pasquet, J.: Deep learning approach for classifying, detecting and predicting photometric redshifts of quasars in the sloan digital sky survey stripe 82. Astron. Astrophys. 611, A97, 100334 (2018). https://doi.org/10.1051/0004-6361/201731106

  26. Schaefer, C., Geiger, M., Kuntzer, T., Kneib, J.P.: Deep convolutional neural networks as strong gravitational lens detectors. Astron. Astrophys. 611, A2 (Mar 2018). https://doi.org/10.1051/0004-6361/201731201

  27. Sellwood, J.A.: Secular evolution in disk galaxies. Rev. Mod. Phys. 86, 1–46 (2014). https://doi.org/10.1103/RevModPhys.86.1

    Article  Google Scholar 

  28. Silva, P.T., Cao, L.T., Hayes, W.B.: Sparcfire: enhancing spiral galaxy recognition using arm analysis and random forests. Galaxies (2018)

    Google Scholar 

  29. Simmons, B.D., et al.: Galaxy zoo: quantitative visual morphological classifications for 48 000 galaxies from candels. Monthly Notices Royal Astron. Soc. 464(4), 4420-4447 (2016). https://doi.org/10.1093/mnras/stw2587

  30. Sol Alonso, M., Lambas, D.G., Tissera, P., Coldwell, G.: Effects of galaxy interactions in different environments. Mon. Not. R. Astron. Soc. 367(3), 1029–1038 (2006). https://doi.org/10.1111/j.1365-2966.2006.10020.x

    Article  Google Scholar 

  31. Sreejith, S., et al.: Galaxy and mass assembly: automatic morphological classification of galaxies using statistical learning. Mon. Not. R. Astron. Soc. 474(4), 5232–5258 (2017). https://doi.org/10.1093/mnras/stx2976

    Article  Google Scholar 

  32. Tuccillo, D., Huertas-Company, M., Decenciére, E., Velasco-Forero, S., Domínguez Sánchez, H., Dimauro, P.: Deep learning for galaxy surface brightness profile fitting. Mon. Not. R. Astron. Soc. 475(1), 894–909 (2017). https://doi.org/10.1093/mnras/stx3186

    Article  Google Scholar 

  33. Willett, K.W., et al.: Galaxy zoo 2: detailed morphological classifications for 304,122 galaxies from the sloan digital sky survey. Monthly Notices Roy. Astron. Soc. 435, 2835–2860 (2013)

    Google Scholar 

  34. Wu, C., et al.: Radio galaxy zoo: claran- a deep learning classifier for radio morphologies. Mon. Not. R. Astron. Soc. 482(1), 1211–1230, 100334 (2018). https://doi.org/10.1093/mnras/sty2646

  35. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 87.1-87.12. BMVA Press (2016)

    Google Scholar 

  36. Zhu, X.-P., Dai, J.-M., Bian, C.-J., Chen, Yu., Chen, S., Hu, C.: Galaxy morphology classification with deep convolutional neural networks. Astrophys. Space Sci. 364(4), 1–15 (2019). https://doi.org/10.1007/s10509-019-3540-1

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Luigi Mazzeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazzeo, P.L., Rizzo, A., Distante, C. (2022). Morphological Galaxies Classification According to Hubble-de Vaucouleurs Diagram Using CNNs. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13231. Springer, Cham. https://doi.org/10.1007/978-3-031-06427-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06427-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06426-5

  • Online ISBN: 978-3-031-06427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics