Skip to main content

Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses

  • Chapter
  • First Online:
The Supercontinuum Laser Source

Abstract

The chapter focus on self-phase modulation, cross-phase modulation (XPM)processes, white-light supercontinuum, modulation instability for SRS, SHG, and four-wave mixing properties of beams for different XPM applications for computation, defection, and coding of beams in communication for wide spectral from UV to THz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, G. P. (1987). Modulation instability induced by cross-phase modulation. Physical Review Letters, 59, 880–883.

    Article  ADS  Google Scholar 

  • Agrawal, G. P., & Potasek, M. J. (1986). Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength. Physics Review, 3, 1765–1776.

    Article  ADS  Google Scholar 

  • Agrawal, G. P., Baldeck, P. L., & Alfano, R. R. (1988). Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers. Conference abstract #MW3, in Digest of the 1988 OSA annual meeting. Optical Society of America, Washington, D.C. Optics Letters, 14, 137–139. 1989.

    Article  ADS  Google Scholar 

  • Agrawal, G. P., Baldeck, P. L., & Alfano, R. R. (1989a). Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers. Physical Review A.

    Google Scholar 

  • Agrawal, G. P., Baldeck, P. L., & Alfano, R. R. (1989b, April). Modulation instability induced by cross-phase modulation in optical fibers. Physical Review A.

    Google Scholar 

  • Alfano, R. R., & Ho, P. P. (1988). Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation. IEEE Journal of Quantum Electronics, 24, 351–364.

    Article  ADS  Google Scholar 

  • Alfano, R. R., & Shapiro, S. L. (1970). Emission in the region 4000–7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24, 584-587. Observation of self-phase modulation and small scale filaments in crystals and glasses. Physical Review Letters, 24, 592–594.

    Article  ADS  Google Scholar 

  • Alfano, R. R., Li, Q., Jimbo, T., Manassah, J. T., & Ho, P. P. (1986). Induced spectral broadening of a weak picosecond pulse in glass produced by an intense ps pulse. Optics Letters, 11, 626–628.

    Article  ADS  Google Scholar 

  • Alfano, R. R., Wang, Q. Z., Jimbo, T., & Ho, P. P. (1987a). Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals. Physics Review, A35, 459–462.

    Article  ADS  Google Scholar 

  • Alfano, R. R., Baldeck, P. L., Raccah, F., & Ho, P. P. (1987b). Cross-phase modulation measured in optical fibers. Applied Optics, 26, 3491–3492.

    Article  ADS  Google Scholar 

  • Alfano, R. R., Baldeck, P. L., & Ho, P. P. (1988). Cross-phase modulation and induced-focusing of optical nonlinearities in optical fibers and bulk materials. Conference abstract #ThA3, In Digest of the OSA topical meeting on nonlinear optical properties of materials. Optical Society of America.

    Google Scholar 

  • Auston, D. H. (1977). In S. L. Shapiro (Ed.), Ultrafast light pulses. Springer-Verlag.

    Google Scholar 

  • Ayral, J. L., Pochelle, J. P., Raffy, J., & Papuchon, M. (1984). Optical Kerr coefficient measurement at 1.15 μm in single-mode optical fivers. Optics Communication, 49, 405–408.

    Article  ADS  Google Scholar 

  • Baldeck, P. L., & Alfano, R. R. (1987). Intensity effects on the stimulated four-photon spectra generated by picosecond pulses in optical fibers. Conference abstract #FQ7, March meeting of the American Physical Society, New York, New York, 1987. Journal of Lightwave Technology, T-5, 1712–1715.

    Article  ADS  Google Scholar 

  • Baldeck, P. L., Raccah, F., & Alfano, R. R. (1987a). Observation of self-focusing in optical fibers with picosecond pulses. Optics Letters, 12, 588–589.

    Article  ADS  Google Scholar 

  • Baldeck, P. L., Ho, P. P., & Alfano, R. R. (1987b). Effects of self, induced-, and cross-phase modulations on the generation of picosecond and femtosecond white light supercontinua. Physical Review Applied, 22, 1677–1694.

    Article  Google Scholar 

  • Baldeck, P. L., Ho, P. P., & Alfano, R. R. (1987c). Experimental evidences for cross-phase modulation, induced-phase modulation and self-focusing on picosecond pulses in optical fibers. Conference abstract #TuV4, in Digest of the 1987 OSA annual meeting. Optical Society of America.

    Google Scholar 

  • Baldeck, P. L., Raccah, F., Garuthara, R., & Alfano, R. R.. (1987d). Spectral and temporal investigation of cross-phase modulation effects on picosecond pulses in singlemode optical fibers. Proceeding paper #TuC4, International Laser Science conference ILS-III, Atlantic City, New Jersey, 1987.

    Google Scholar 

  • Baldeck, P. L., Alfano, R. R., & Agrawal, G. P. (1988a). Induced-frequency shift of copropagating pulses. Applied Physics Letters, 52, 1939–1941.

    Article  ADS  Google Scholar 

  • Baldeck, P. L., Alfano, R. R., & Agrawal, G. P. (1988b). Observation of modulation instability in the normal dispersion regime of optical fibers. Conference abstract #MBB7, in Digest of the 1988 OSA annual meeting. Optical Society of America.

    Google Scholar 

  • Baldeck, P. L., Alfano, R. R., & Agrawal, G. P.. (1988c). Induced-frequency shift, induced spectral broadening and optical amplification of picosecond pulses in a single-mode optical fiber. Proceeding paper #624, Electrochemical Society symposium on nonlinear optics and ultrafast phenomena, Chicago, Illinois, 1988.

    Google Scholar 

  • Baldeck, P. L., Alfano, R. R., & Agrawal, G. P. (1988d). Generation of sub-100-fsec pulses at 532 nm from modulation instability induced by cross-phase modulation in single-mode optical fibers. Proceeding paper #PD2, in Utrafast Phenomena (p. 6). Springer-Verlag.

    Google Scholar 

  • Baldeck, P. L., & Alfano, R. R.. (1989). Cross-phase modulation: A new technique for controlling the spectral, temporal and spatial properties of ultrashort pulses. SPIE Proceedings of the 1989 Optical Science Engineering conference, Paris, France.

    Google Scholar 

  • Chraplyvy, A. R., & Stone, J. (1984). Measurement of cross-phase modulation in coherent wavelength-division multiplexing using injection lasers. Electronics Letters, 20, 996–997.

    Article  ADS  Google Scholar 

  • Chraplyvy, A. R., Marcuse, D., & Henry, P. S. (1984). Carrier-induced phase noise in angel-modulated optical-fiber systems. Journal of Lightwave Technology, LT-2, 6–10.

    Article  ADS  Google Scholar 

  • Cornelius, P., & Harris, L. (1981). Role of self-phase modulation in stimulated Raman scattering from more than one mode. Optics Letters, 6, 129–131.

    Article  ADS  Google Scholar 

  • Dianov, E. M., Karasik, A. Y., Mamyshev, P. V., Onishchukov, G. I., Prokhorov, A. M., & M.F. Stel’Marh, and A.A. Formichev. (1984). Picosecond structure of the pump pulse in stimulated Raman scattering in optical fibers. Optical and Quantum Electronics, 17, 187.

    Google Scholar 

  • Duguay, M. A., & Hansen, J. W. (1969). An ultrafast light gate. Applied Physics Letters, 15, 192–194.

    Article  ADS  Google Scholar 

  • Dziedzic, J. M., Stolen, R. H., & Ashkin, A. (1981). Optical Kerr effect in ling fibers. Applied Optics, 20, 1403–1406.

    Article  ADS  Google Scholar 

  • French, P. M. W., Gomes, A. S. L., Gouveia-Neto, A. S., & Taylor, J. R. (1986). Picosecond stimulated Raman generation, pump pulse fragmentation, and fragment compression in single-mode optical fibers. IEEE Journal of Quantum Electronics, QE-22, 2230.

    Article  ADS  Google Scholar 

  • Gersten, J., Alfano, R. R., & Belic, M. (1980). Combined stimulated Raman scattering and continuum self-phase modulation. Physics Review, A#21, 1222–1224.

    Article  ADS  Google Scholar 

  • Gomes, A. S. L., Sibbet, W., & Taylor, J. R. (1986). Spectral and temporal study of picosecond-pulse propagation in a single-mode optical fibers. Applied Physics, B#39, 44–46.

    Google Scholar 

  • Gomes, A. S. L., da Silva, V. L., & Taylor, J. R. (1988). Direct measurement of nonlinear frequency chirp of Raman radiation in single-mode optical fibers using a spectral window method. Journal of the Optical Society of America, B#5, 373–380.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., Faldon, M. E., Sombra, A. S. B., Wigley, P. G. J., & Taylor, J. R. (1988a). Subpicosecond-pulse generation through cross-phase modulation-induced modulation instability in optical fibers. Optics Letters, 12, 901–906.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., Faldon, M. E., & Taylor, J. R. (1988b). Raman amplification of modulation instability and solitary-wave formation. Optics Letters, 12, 1029–1031.

    Article  ADS  Google Scholar 

  • Grudinin, A. B., Dianov, E. M., Korobkin, D. V., Prokhorov, A. M., Serkinand, V. N., & Khaidarov, D. V. (1987). Decay of femtosecond pulses in single-mode optical fibers. Pis’ma Zh. Eksp. Teor. Fiz, 46, 175–177. [Sov. Phys. JETP Lett. 46, 221, 225.].

    ADS  Google Scholar 

  • Hasegawa, A. (1975). Plasma instabilities and nonlinear effects. Springer-Verlag.

    Book  Google Scholar 

  • Ho, P. P., Wang, Q. Z., Ji, D., & Alfano, R. R. (1988). Propagation of harmonic cross-phase-modulation pulses in ZnSe. Applied Physics Letters, 111–113.

    Google Scholar 

  • Hook, A. D., & Anderson, and M. Lisak. (1988). Soliton-like pulses in stimulated Raman scattering. Optics Letters, 12, 114–116.

    Google Scholar 

  • Imoto, N., Watkins, S., & Sasaki, Y. (1987). A nonlinear optical-fiber interferometer for nondemolition measurement of photon number. Optics Communications, 61, 159–163.

    Article  ADS  Google Scholar 

  • Islam, M. N., Mollenauer, L. F., & Stolen, R. H. (1986). Fiber Raman amplification soliton laser. In Ultrafast Phenomena 5. Springer-Verlag.

    Google Scholar 

  • Islam, M. N., Mollenauer, L. F., Stolen, R. H., Simson, J. R., & Shang, H. T. (1987a). Cross-phase modulation in optical fibers. Optics Letters, 12, 625–627.

    Article  ADS  Google Scholar 

  • Islam, M. N., Mollenauer, L. F., Stolen, R. H., Simson, J. R., & Shang, H. T. (1987b). Amplifier/compressor fiber Raman lasers. Optics Letters, 12, 814–816.

    Article  ADS  Google Scholar 

  • Jaskorzynska, B., & Schadt, D. (1988). All-fiber distributed compression of weak pulses in the regime of negative group-velocity dispersion. IEEE Journal of Quantum Electronics, QE-24, 2117–2120.

    Article  ADS  Google Scholar 

  • Johnson, A. M., Stolen, R. H., & Simpson, W. M. (1986). The observation of chirped stimulated Raman scattered light in fibers. In Ultrafast Phenomena 5. Springer-Verlag.

    Google Scholar 

  • Keiser, G. (1983). In optical Fiber communications. McGraw-Hill.

    Google Scholar 

  • Kelley, P. L. (1965). Self-focusing of optical beams. Physical Review Letters, 15, 1085.

    Article  ADS  Google Scholar 

  • Kimura, Y., Kitayama, K. I., Shibata, N., & Seikai, S. (1986). All-fibre-optic logic “AND” gate. Electronics Letters, 22, 277–278.

    Article  ADS  Google Scholar 

  • Kitayama, K. I., Kimura, Y., & Seikai, S. (1985a). Fiber-optic logic gate. Applied Physics Letters, 46, 317–319.

    Article  ADS  Google Scholar 

  • Kitayama, K. I., Kimura, Y., Okamoto, K., & Seikai, S. (1985b). Optical sampling using an all-fiber optical Kerr shutter. Applied Physics Letters, 46, 623–625.

    Article  ADS  Google Scholar 

  • Levenson, M. D., Shelby, R. M., Reid, M., & Walls, D. F. (1986). Quantum nondemolition detection of optical quadrature amplitudes. Physical Review Letters, 57, 2473–2476.

    Article  ADS  Google Scholar 

  • Lin, C., & Bosh, M. A. (1981). Large Stokes-shift stimulated four-photon mixing in optical fibers. Applied Physics Letters, 38, 479–481.

    Article  ADS  Google Scholar 

  • Hian-Hua, L., Li, Y.-L., & Jiang, J.-L. (1985). On combined self-phase modulation and stimulated Raman scattering in fibers. Optical and Quantum Electronics, 17, 187.

    Article  Google Scholar 

  • Manassah, J. T. (1987a). Induced phase modulation of the Raman pulse in optical fibers. Applied Optics, 26, 3747–3749.

    Article  ADS  Google Scholar 

  • Manassah, J. T. (1987b). Time-domain characteristics of a Raman pulse in the presence of a pump. Applied Optics, 26, 3750–3751.

    Article  ADS  Google Scholar 

  • Manassah, J. T. (1987c). Amplitude and phase of a pulsed second-harmonic signal. Journal of the Optical Society of America, B#4, 1235–1240.

    Article  ADS  Google Scholar 

  • Manassah, J. T. (1988). Pulse compression of an induced-phase modulated weak signal. Optics Letters, 13, 752–755.

    Article  ADS  Google Scholar 

  • Manassah, J. T., & Cockings, O. R. (1987). Induced phase modulation of a generated second-harmonic signal. Optics Letters, 12, 1005–1007.

    Article  ADS  Google Scholar 

  • Manassah, J. T., Mustafa, M., Alfano, R. R., & Ho, P. P. (1985). Induced supercontinuum and steepening of an ultrafast laser pulse. Physics Letters, 113A, 242–247.

    Article  ADS  Google Scholar 

  • Monerie, M., & Durteste, Y. (1987). Direct interferometric measurement of nonlinear refractive index of optical fibers by cross-phase modulation. Electronics Letters, 23, 961–962.

    Article  ADS  Google Scholar 

  • Morioka, T., Saruwatari, M., & Takada, A. (1987). Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode optical fibers. Electronics Letters, 23, 453–454.

    Article  ADS  Google Scholar 

  • Nakashima, T., Nakazawa, M., Nishi, K., & Kubuta, H. (1987). Effect of stimulated Raman scattering on pulse-compression characteristics. Optics Letters, 12, 404–406.

    Article  ADS  Google Scholar 

  • Schadt, D., Jaskorzynska, B., & Osterberg, U. (1986). Numerical study on combined stimulated Raman scattering and self-phase modulation in optical fibers influenced by walk-off between pump and Stokes pulses. Journal of the Optical Society of America, B#3, 1257–1260.

    Article  ADS  Google Scholar 

  • Schadt, D., & Jaskorzynska, B. (1987a). Frequency chirp and spectra due to self-phase modulation and stimulated Raman scattering influenced by walk-off in optical fibers. Journal of the Optical Society of America, B#4, 856–862.

    Article  ADS  Google Scholar 

  • Schadt, D., & Jaskorzynska, B. (1987b). Generation of short pulses from CW light by influence of cross-phase modulation in optical fibers. Electronics Letters, 23, 1091–1092.

    ADS  Google Scholar 

  • Schadt, D., & Jaskorzynska, B. (1988). Suppression of the Raman self-frequency shift by cross-phase modulation. Journal of the Optical Society of America, B#5, 2374–2378.

    Article  ADS  Google Scholar 

  • Shen, Y. R. (1984). In the principles of nonlinear optics. Wiley.

    Google Scholar 

  • Shimizu, F., & Stoicheff, B. P. (1969). Study of the duration and birefringence of self-trapped filaments in CS2. IEEE Journal of Quantum Electronics, QE-5, 544.

    Article  ADS  Google Scholar 

  • Stolen, R. H. (1975). Phase-matched stimulated four-photon mixing. IEEE Journal of Quantum Electronics, QE-11, 213–215.

    Google Scholar 

  • Stolen, R. H. (1979). In S. E. Miller & A. G. Chynoweth (Eds.), Nonlinear properties of optical fibers. Academic Press. Chapter 5.

    Chapter  Google Scholar 

  • Stolen, R. H., & Ashkin, A. (1972). Optical Kerr effect in glass waveguide. Applied Physics Letters, 22, 294–296.

    Article  ADS  Google Scholar 

  • Stolen, R. H., Bosh, M. A., & Lin, C. (1981). Phase matching in birefringent fibers. Optics Letters, 6, 213–215.

    Article  ADS  Google Scholar 

  • Stolen, R. H., & Johnson, A. M. (1986). The effect of pulse walk-off on stimulated Raman scattering in optical fibers. IEEE Journal of Quantum Electronics, QE-22, 2230.

    Google Scholar 

  • Swartzlander, G. A., Jr., & Kaplan, A. E. (1988). Self-deflection of laser beams in a thin nonlinear film. Journal of the Optical Society of America, B5, 765–768.

    Article  ADS  Google Scholar 

  • Tai, K., Hasegawa, A., & Tomita, A. (1986). Observation of modulation instability in optical fibers. Physical Review Letters, 56, 135–138.

    Article  ADS  Google Scholar 

  • Tomlinson, W. J., Stolen, R. H., & Johnson, A. M. (1985). Optical wave breaking of pulses in nonlinear optical fibers. Optics Letters, 10, 457–459.

    Article  ADS  Google Scholar 

  • Trillo, S., Wabnitz, S., Wright, E. M., & Stegeman, G. I. (1988). Optical solitary waves induced by cross-phase modulation. Optics Letters, 13, 871–873.

    Article  ADS  Google Scholar 

  • Wahio, K., Inoue, K., & Tanigawa, T. (1980). Efficient generation near-IR stimulated light scattering in optical fibers pumped in low-dispersion region at 1.3 mm. Electronics Letters, 16, 331–333.

    Article  ADS  Google Scholar 

  • Weiner, A. M., Heritage, J. P., & Stolen, R. H. (1986). Effect of stimulated Raman scattering and pulse walk-off on self-phase modulation in optical fibers. In Digest of the conference on lasers and electro-optics (p. 246). Optical Society of America.

    Google Scholar 

  • Weiner, A. M., Heritage, J. P., & Stolen, R. H. (1988). Self-phase modulation and optical pulse compression influenced by stimulated Raman scattering in fibers. Journal of the Optical Society of America, B5, 364–372.

    Article  ADS  Google Scholar 

  • White, I. H., Penty, R. V., & Epworth, R. E. (1988). Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers. Electronics Letters, 24, 172–173.

    Article  Google Scholar 

  • Zysset, B., & Weber, H. P. (1986). Temporal and spectral investigation of Nd: YAG pulse compression in optical fibers and its application to pulse compression. In Digest of the conference on lasers and electro-optics (p. 182). Optical Society of America.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Baldeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baldeck, P.L., Ho, P.P., Alfano, R.R. (2022). Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses. In: Alfano, R.R. (eds) The Supercontinuum Laser Source. Springer, Cham. https://doi.org/10.1007/978-3-031-06197-4_4

Download citation

Publish with us

Policies and ethics