Skip to main content

Venous Hemodynamics

  • Chapter
  • First Online:
Doppler Ultrasound in Obstetrics and Gynecology
  • 772 Accesses

Abstract

Since the underlying hemodynamics are essential for utilizing and interpreting Doppler recordings of the fetal venous system, we here focus on steady and accelerated flow and pulsatile flow in veins from a clinical view. That covers blood velocity, pressure, and resistance including viscosity. Further, we discuss the nature of waves that travel along the venous transmission lines and how they are expressed in velocity, pressure, and diameter variation. Towards the periphery, pulsations taper off according to changes in local impedance including geometry. Clinically relevant veins (umbilical vein, portal system, and ductus venosus) are used to demonstrate the effect of wave reflections, reservoir function, and the impact of blood velocity level on viscous resistance. The information on volume of blood flow, pressure gradient, and diameter variation are fundamentals in circulation. We therefore discuss the techniques of assessing these parameters as they are used in clinical research. We provide suggestions for how to optimize the measurements and minimize error to promote these techniques as candidates for clinical assessment tools in individual cases. The umbilical vein, ductus venosus, and the fetal liver are involved in decisive distributional regulation and we correspondingly focus on the underlying dynamics of this venous section in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. 4th ed. London: Arnold; 1998, 564 p.

    Google Scholar 

  2. Fung YC. Biomechanics. New York, Springer-Verlag New York; 1993.

    Book  Google Scholar 

  3. Fung YC. Biomechanics. New York, Berlin: Springer-Verlag; 1984.

    Google Scholar 

  4. Fung YC. Biodynamics. New York, Berlin, Heidelberg, Tokyo: Springer-Verlag New York; 1984.

    Book  Google Scholar 

  5. Taylor KJW, Burns PN, Wells PNT, editors. Clinical applications of Doppler ultrasound. 2nd ed. New York: Raven Press; 1995.

    Google Scholar 

  6. Skulstad SM, Rasmussen S, Iversen OE, Kiserud T. The development of high venous velocity at the fetal umbilical ring during gestational weeks 11-19. Br J Obstet Gynaecol. 2001;108(3):248–53.

    CAS  Google Scholar 

  7. Kilavuz O, Vetter K. The umbilical ring—the first rapid in the fetoplacental venous system. J Perinat Med. 1998;26(2):120–2.

    CAS  Google Scholar 

  8. Kiserud T, Eik-Nes SH, Blaas HG, Hellevik LR. Ultrasonographic velocimetry of the fetal ductus venosus. Lancet. 1991;338(8780):1412–4.

    Article  CAS  Google Scholar 

  9. Kiserud T, Hellevik LR, Eik-Nes SH, Angelsen BA, Blaas HG. Estimation of the pressure gradient across the fetal ductus venosus based on Doppler velocimetry. Ultrasound Med Biol. 1994;20(3):225–32.

    Article  CAS  Google Scholar 

  10. Nyberg MK, Johnsen SL, Rasmussen S, Kiserud T. Hemodynamics of fetal breathing movements: the inferior vena cava. Ultrasound Obstet Gynecol. 2011;38(6):658–64.

    Article  CAS  Google Scholar 

  11. Kiserud T, Hellevik LR, Hanson MA. Blood velocity profile in the ductus venosus inlet expressed by the mean/maximum velocity ratio. Ultrasound Med Biol. 1998;24(9):1301–6.

    Article  CAS  Google Scholar 

  12. Kiserud T, Crowe C, Hanson M. Ductus venosus agenesis prevents transmission of central venous pulsations to the umbilical vein in fetal sheep. Ultrasound Obstet Gynecol. 1998;11(3):190–4.

    Article  CAS  Google Scholar 

  13. Pennati G, Bellotti M, De Gasperi C, Rognoni G. Spatial velocity profile changes along the cord in normal human fetuses: can these affect Doppler measurements of venous umbilical blood flow? Ultrasound Obstet Gynecol. 2004;23(2):131–7.

    Article  CAS  Google Scholar 

  14. Pennati G, Redaelli A, Bellotti M, Ferrazzi E. Computational analysis of the ductus venosus fluid dynamics based on Doppler measurements. Ultrasound Med Biol. 1996;22(6):1017–29.

    Article  CAS  Google Scholar 

  15. Pennati G, Bellotti M, Ferrazzi E, Bozzo M, Pardi G, Fumero R. Blood flow through the ductus venosus in human fetuses: calculation using Doppler velocimetry and computational findings. Ultrasound Med Biol. 1998;24:477–87.

    Article  CAS  Google Scholar 

  16. Pennati G, Bellotti M, Ferrazzi E, Rigano S, Garberi A. Hemodynamic changes across the human ductus venosus: a comparison between clinical findings and mathematical calculations. Ultrasound Obstet Gynecol. 1997;9(6):383–91.

    Article  CAS  Google Scholar 

  17. Acharya G, Kiserud T. Ductus venosus blood velocity and diameter pulsations are more prominent at the outlet than at the inlet. Eur J Obstet Gynecol Reprod Biol. 1999;84:149–54.

    Article  CAS  Google Scholar 

  18. Leinan PR, Degroote J, Kiserud T, Skallerud B, Vierendeels J, Hellevik LR. Velocity profiles in the human ductus venosus: a numerical fluid structure interaction study. Biomech Model Mechanobiol. 2013;12(5):1019–35.

    Article  Google Scholar 

  19. Leinan PR, Kiserud T, Hellevik LR. Human ductus venosus velocity profiles in the first trimester. Cardiovasc Eng Technol. 2013;4(3):257–66.

    Article  Google Scholar 

  20. Schröder HJ, Tchirikov M, Rybakowski C. Pressure pulses and flow velocities in central veins of the anesthetized sheep fetus. Am J Physiol Heart Circ Physiol. 2003;284(4):H1205–11.

    Article  Google Scholar 

  21. Kiserud T, Stratford L, Hanson MA. Umbilical flow distribution to the liver and the ductus venosus: an in vitro investigation of the fluid dynamic mechanisms in the fetal sheep. Am J Obstet Gynecol. 1997;177(1):86–90.

    Article  CAS  Google Scholar 

  22. Kiserud T, Rasmussen S, Skulstad SM. Blood flow and degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol. 2000;182:147–53.

    Article  CAS  Google Scholar 

  23. Kiserud T, Ozaki T, Nishina H, Rodeck C, Hanson MA. Effect of NO, phenylephrine, and hypoxemia on ductus venosus diameter in fetal sheep. Am J Physiol Heart Circ Physiol. 2000;279(3):H1166–71.

    Article  CAS  Google Scholar 

  24. Hatle L, Brubakk A, Tromsdal A, Angelsen B. Non-invasive assessment of pressure drop in mitral stenosis by Doppler ultrasound. Br Heart J. 1978;40:131–40.

    Article  CAS  Google Scholar 

  25. Holen J, Aaslid R, Landmark K, Simonsen S. Determination of pressure gradient in mitral stenosis with a non-invasive ultrasound Doppler technique. Acta Med Scand. 1976;199:455–60.

    Article  CAS  Google Scholar 

  26. Hellevik LR, Kiserud T, Irgens F, Ytrehus T, Eik-Nes SH. Simulation of pressure drop and energy dissipation for blood flow in a human fetal bifurcation. ASME J Biomech Eng. 1998;120:455–62.

    Article  CAS  Google Scholar 

  27. Hatle L, Angelsen B. Doppler ultrasound in cardiology. 1st ed. Philadelphia: Lea & Febiger; 1982. p. 238.

    Google Scholar 

  28. Gill RW, Kossoff G. Pulsed doppler combined with B-mode imaging for blood flow measurement. Contrib Gynecol Obstet. 1979;6:139–41.

    Article  CAS  Google Scholar 

  29. Eik-Nes SH, Marsál K, Brubakk AO, Ulstein M. Ultrasonic measurements of human fetal blood flow in aorta and umbilical vein: Influence of fetal breathing movements. In: Kurjak A, editor. Recent advances in ultrasound diagnosis: Proceedings of the International Symposium on Recent Advances in Ultrasound Diagnosis. 2: Exerpta Medica; 1980. p. 233–40.

    Google Scholar 

  30. Gill RW, Kossoff G, Warren PS, Garrett WJ. Umbilical venous flow in normal and complicated pregnancies. Ultrasound Med Biol. 1984;10:349–63.

    Article  CAS  Google Scholar 

  31. Kiserud T, Eik-Nes SH, Blaas H-G, Hellevik LR, Simensen B. Ductus venosus blood velocity and the umbilical circulation in the seriously growth retarded fetus. Ultrasound Obstet Gynecol. 1994;4:109–14.

    Article  CAS  Google Scholar 

  32. Barbera A, Galan HL, Ferrazzi E, Rigano S, Jozwik M, Battaglia FC, et al. Relationship of umbilical vein blood flow to growth parameters in the human fetus. Am J Obstet Gynecol. 1999;181(1):174–9.

    Article  CAS  Google Scholar 

  33. Boito S, Struijk PC, Ursem NT, Stijnen T, Wladimiroff JW. Umbilical venous volume flow in the normally developing and growth-restricted human fetus. Ultrasound Obstet Gynecol. 2002;19(4):344–9.

    Article  CAS  Google Scholar 

  34. Acharya G, Wilsgaard T, Rosvold Berntsen GK, Maltau JM, Kiserud T. Reference ranges for umbilical vein blood flow in the second half of pregnancy based on longitudinal data. Prenat Diagn. 2005;25(2):99–111.

    Article  Google Scholar 

  35. Ferrazzi E, Rigano S, Bozzo M, Bellotti M, Giovannini N, Galan H, et al. Umbilical vein blood flow in growth-restricted fetuses. Ultrasound Obstet Gynecol. 2000;16(5):432–8.

    Article  CAS  Google Scholar 

  36. Galan HL, Jozwik M, Rigano S, Regnault TR, Hobbins JC, Battaglia FC, et al. Umbilical vein blood flow determination in the ovine fetus: comparison of Doppler ultrasonographic and steady-state diffusion techniques. Am J Obstet Gynecol. 1999;181(5 Pt 1):1149–53.

    Article  CAS  Google Scholar 

  37. Jouppila P, Kirkinen P, Puukka R. Correlation between umbilical vein blood flow and umbilical blood viscosity in normal and complicated pregnancies. Arch Gynecol. 1986;237(4):191–7.

    Article  CAS  Google Scholar 

  38. Tchirikov M, Rybakowski C, Hünecke B, Schröder HJ. Blood flow through the ductus venosus in singleton and multifetal pregnancies and in fetuses with intrauterine growth retardation. Am J Obstet Gynecol. 1998;178:943–9.

    Article  CAS  Google Scholar 

  39. Bellotti M, Pennati G, De Gasperi C, Battaglia FC, Ferrazzi E. Role of ductus venosus in distribution of umbilical blood flow in human fetuses during second half of pregnancy. Am J Physiol Heart Circ Physiol. 2000;279(3):H1256–63.

    Article  CAS  Google Scholar 

  40. Leinan PR, Kiserud T, Hellevik LR. Human ductus venosus velocity profile in the first trimester. Cardiovasc Eng Technol. 2013;4(3):257–66.

    Article  Google Scholar 

  41. Kiserud T, Rasmussen S. How repeat measurements affect the mean diameter of the umbilical vein and the ductus venosus. Ultrasound Obstet Gynecol. 1998;11(6):419–25.

    Article  CAS  Google Scholar 

  42. Kiserud T, Saito T, Ozaki T, Rasmussen S, Hanson MA. Validation of diameter measurements by ultrasound: intraobserver and interobserver variations assessed in vitro and in fetal sheep. Ultrasound Obstet Gynecol. 1999;13(1):52–7.

    Article  CAS  Google Scholar 

  43. Eik-Nes SH, Marsal K, Kristoffersen K. Methodology and basic problems related to blood flow studies in the human fetus. Ultrasound Med Biol. 1984;10(3):329–37.

    Article  CAS  Google Scholar 

  44. Rizzo G, Capponi A, Aiello E, Arduini D. First-trimester assessment of umbilical vein diameter using the semiautomated system for nuchal translucency measurement. Ultrasound Obstet Gynecol. 2011;37(6):741.

    Article  CAS  Google Scholar 

  45. Rizzo G, Mappa I, Bitsadze V, Khizroeva J, Makatsarya A, D’Antonio F. The added value of umbilical vein flow in predicting fetal macrosomia at 36 weeks of gestation: a prospective cohort study. Acta Obstet Gynecol Scand. 2021;100:900–7.

    Article  CAS  Google Scholar 

  46. Hellevik LR, Kiserud T, Irgens F, Stergiopulos N, Hanson M. Mechanical properties of the fetal ductus venosus and umbilical vein. Heart Vessel. 1998;13:175–80.

    Article  CAS  Google Scholar 

  47. Kiserud T. Hemodynamics of the ductus venosus. Eur J Obstet Gynecol Reprod Biol. 1999;84(2):139–47.

    Article  CAS  Google Scholar 

  48. Kiserud T. Fetal venous circulation—an update on hemodynamics. J Perinat Med. 2000;28:90–6.

    Article  CAS  Google Scholar 

  49. Kiserud T. The fetal venous circulation. Fetal Matern Med Rev. 2003;14(1):57–95.

    Article  Google Scholar 

  50. Kiserud T, Rasmussen S. Ultrasound assessment of the fetal foramen ovale. Ultrasound Obstet Gynecol. 2001;17(2):119–24.

    Article  CAS  Google Scholar 

  51. Hellevik LR, Stergiopulos N, Kiserud T, Rabben SI, Eik-Nes SH, Irgens F. A mathematical model of umbilical venous pulsation. J Biomech. 2000;33:1123–30.

    Article  CAS  Google Scholar 

  52. Acharya G, Kiserud T. Pulsations of the ductus venosus blood velocity and diameter are more pronounced at the outlet than at the inlet. Eur J Obstet Gynecol Reprod Biol. 1999;84(2):149–54.

    Article  CAS  Google Scholar 

  53. Hellevik LR, Vierendeels J, Kiserud T, Stergiopulos N, Irgens F, Dick E, et al. An assessment of ductus venosus tapering and wave transmission from the fetal heart. Biomech Model Mechanobiol. 2009;8(6):509–17.

    Article  Google Scholar 

  54. Bellotti M, Pennati G, Pardi G, Fumero R. Dilatation of the ductus venosus in human fetuses: ultrasonographic evidence and mathematical modeling. Am J Physiol. 1998;275(Heart Circ Physiol 44):H1759–67.

    CAS  Google Scholar 

  55. Kiserud T, Eik-Nes SH, Hellevik LR, Blaas H-G. Ductus venosus—a longitudinal doppler velocimetric study of the human fetus. J Matern Fetal Invest. 1992;2:5–11.

    Google Scholar 

  56. Parker KH, Jones CJH. Forward and backward running waves in the arteries: analysis using the method of characteristics. ASME J Biomech Eng. 1990;112:322–6.

    Article  CAS  Google Scholar 

  57. Kiserud T, Kilavuz Ö, Hellevik LR. Venous pulsation in the left portal branch—the effect of pulse and flow direction. Ultrasound Obstet Gynecol. 2003;21:359–64.

    Article  CAS  Google Scholar 

  58. Kilavuz O, Vetter K, Kiserud T, Vetter P. The left portal vein is the watershed of the fetal venous system. J Perinat Med. 2003;31(2):184–7.

    Article  Google Scholar 

  59. Kessler J, Rasmussen S, Kiserud T. The left portal vein as an indicator of watershed in the fetal circulation: development during the second half of pregnancy and a suggested method of evaluation. Ultrasound Obstet Gynecol. 2007;30(5):757–64.

    Article  CAS  Google Scholar 

  60. Rizzo G, Arduini D, Romanini C. Umbilical vein pulsations: a physiologic finding in early gestation. Am J Obstet Gynecol. 1992;167(3):675–7.

    Article  CAS  Google Scholar 

  61. Skulstad SM, Kiserud T, Rasmussen S. Degree of fetal umbilical venous constriction at the abdominal wall in a low risk population at 20–40 weeks of gestation. Prenatal Diagnosis. 2002;22:1022–7.

    Article  Google Scholar 

  62. Skulstad SM, Kiserud T, Rasmussen S. The effect of vascular constriction on umbilical venous pulsation. Ultrasound Obstet Gynecol. 2004;23(2):126–30.

    Article  CAS  Google Scholar 

  63. Nakai Y, Imanaka M, Nishio J, Ogita S. Umbilical venous pulsation associated with hypercoiled cord in growth-retarded fetuses. Gynecol Obstet Investig. 1997;43(1):6–7.

    Article  Google Scholar 

  64. Mari G, Uerpairojkit B, Copel JA. Abdominal venous system in the normal fetus. Obstet Gynecol. 1995;86(5):729–33.

    Article  CAS  Google Scholar 

  65. van Splunder IP, Huisman TWA, Stijnen T, Wladimiroff JW. Presence of pulsations and reproducibility of waveform recording in the umbilical and left portal vein in normal pregnancies. Ultrasound Obstet Gynecol. 1994;4:49–53.

    Article  Google Scholar 

  66. Reed KL, Appleton CP, Anderson CF, Shenker L, Sahn DJ. Doppler studies of vena cava flows in human fetuses; insights into normal and abnormal cardiac physiology. Circulation. 1990;81:498–505.

    Article  CAS  Google Scholar 

  67. Kanzaki T, Chiba Y. Evaluation of the preload condition of the fetus by inferior vena caval blood flow pattern. Fetal Diagn Ther. 1990;5:168–74.

    Article  CAS  Google Scholar 

  68. Gudmundsson S, Gunnarsson G, Hökegård K-H, Ingmarsson J, Kjellmer I. Venous Doppler velocimetry in relationship to central venous pressure and heart rate during hypoxia in ovine fetus. J Perinat Med. 1999;27:81–90.

    Article  CAS  Google Scholar 

  69. Lingman G, Laurin J, Marsal K. Circulatory changes in fetuses with imminent asphyxia. Biol Neonate. 1986;49(2):66–73.

    Article  CAS  Google Scholar 

  70. Gudmundsson S, Huhta JC, Wood DC, Tulzer G, Cohen AW, Weiner S. Venous Doppler ultrasonography in the fetus with nonimmune hydrops. Am J Obstet Gynecol. 1991;164:33–7.

    Article  CAS  Google Scholar 

  71. Nakai Y, Miyazaki Y, Matsuoka Y, Matsumoto M, Imanaka M, Ogita S. Pulsatile umbilical venous flow and its clinical significance. Br J Obstet Gynaecol. 1992;99:977–80.

    Article  CAS  Google Scholar 

  72. Reuss ML, Rudolph AM, Dae MW. Phasic blood flow patterns in the superior and inferior venae cavae and umbilical vein of fetal sheep. Am J Obstet Gynecol. 1983;145:70–6.

    Article  CAS  Google Scholar 

  73. Hasaart TH, de Haan J. Phasic blood flow patterns in the common umbilical vein of fetal sheep during umbilical cord occlusion and the influence of autonomic nervous system blockade. J Perinat Med. 1986;14:19–26.

    Article  CAS  Google Scholar 

  74. Huhta JC. Deciphering the hieroglyphics of venous Doppler velocities. Ultrasond Obstet Gynecol. 1997;9:300–1.

    Article  CAS  Google Scholar 

  75. Kiserud T. In a different vein: the ductus venosus could yield much valuable information. Ultrasound Obstet Gynecol. 1997;9:369–72.

    Article  CAS  Google Scholar 

  76. Kiserud T. The ductus venosus. Seminars Perinat. 2001;25(1):11–20.

    Article  CAS  Google Scholar 

  77. Kiserud T. Venous flow dynamics: intrauterine growth restriction and cardiac decompensation. In: Yagel S, Gembruch U, Silverman N, editors. Fetal cardiology—embryology, genetics, physiology, echocardiographic evaluation, diagnosis, and perinatal management of cardiac diseases, Series in Maternal-Fetal Medicine. 1. 3rd ed. Boca Raton, FL: CRP Press, Taylor & Francis Group; 2019. p. 842.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torvid Kiserud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiserud, T., Kessler, J. (2023). Venous Hemodynamics. In: Maulik, D., Lees, C.C. (eds) Doppler Ultrasound in Obstetrics and Gynecology. Springer, Cham. https://doi.org/10.1007/978-3-031-06189-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06189-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06188-2

  • Online ISBN: 978-3-031-06189-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics