Skip to main content

Spectral Doppler Sonography: Waveform Analysis and Hemodynamic Interpretation

  • Chapter
  • First Online:
Doppler Ultrasound in Obstetrics and Gynecology
  • 785 Accesses

Abstract

Doppler velocimetry offers a wide range of hemodynamic information. Although the technique permits volumetric flow quantification, there are critical concerns, such as angle dependency, regarding the precision of this approach. Alternative approaches include the recent development of vector velocity imaging which can provide comprehensive hemodynamic information without angle dependency. Assessment of the downstream hemodynamic state is of importance for perinatal application. It is achieved by Doppler waveform analysis, which generates indices describing the pulsatility of the wave. Doppler indices reflect impedance to flow downstream from the measurement point, although the effect of fetal heart rate changes on the diastolic phase of the cardiac cycle may confound this ability of the indices. In addition, there is angiomorphological evidence that links abnormal Doppler indices to placental vascular pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saini VD, Maulik D, Nanda NC, Rosenzweig MS. Computerized evaluation of blood flow measurement indices using Doppler ultrasound. Ultrasound Med Biol. 1983;9:657–60.

    Article  CAS  Google Scholar 

  2. Maulik D, Saini VD, Nanda NC, Rosenzweig MS. Doppler evaluation of fetal hemodynamics. Ultrasound Med Biol. 1982;8:705–10.

    Article  CAS  Google Scholar 

  3. Evans DH, McDicken WN, Skidmore R, Woodcock JP. Doppler signal processors: theoretical considerations. In: Doppler ultrasound: physics, instrumentation and clinical applications. Chichester: Wiley; 1989. p. 144.

    Google Scholar 

  4. Maulik D, Nanda NC, Moodley S, Saini VD, Thiede HA. Application of Doppler echocardiography in the assessment of fetal cardiac disease. Am J Obstet Gynecol. 1985;151:951–7.

    Article  CAS  Google Scholar 

  5. Kremkau F. Doppler ultrasound: principles and instrumentation. Philadelphia: Saunders; 1990.

    Google Scholar 

  6. Gill RW. Pulsed Doppler with B-mode imaging for quantitative blood flow measurements. Ultrasound Med Biol. 1979;5:223–35.

    Article  CAS  Google Scholar 

  7. Eik Nes SH, Brubakk AO, Ulstein MK. Measurement of human fetal blood flow. BMJ. 1980;280:283–4.

    Article  Google Scholar 

  8. Maulik D, Nanda NC, Saini VD. Fetal Doppler echocardiography: methods and characterization of normal and abnormal hemodynamics. Am J Cardiol. 1984;53:572–8.

    Article  CAS  Google Scholar 

  9. Boito S, Struijk PC, Ursem NT, Stijnen T, Wladimiroff JW. Umbilical venous volume flow in the normal developing and growth restricted human fetus. Ultrasound Obstet Gynecol. 2002;19:344–9.

    Article  CAS  Google Scholar 

  10. Hoskins PR, Kenwright DA. Recent developments in vascular ultrasound technology. Ultrasound. 2015;23(3):158–65.

    Article  CAS  Google Scholar 

  11. Jensen JA, Nikolov SI, Alfred CH, Garcia D. Ultrasound vector flow imaging—part I: sequential systems. IEEE Trans Ultrasonics Ferroelectrics Frequency Control. 2016;63(11):1704–21.

    Article  Google Scholar 

  12. Jensen JA, Nikolov SI, Yu AC, Garcia D. Ultrasound vector flow imaging—part II: parallel systems. IEEE Trans Ultrasonics Ferroelectrics Frequency Control. 2016;63(11):1722–32.

    Article  Google Scholar 

  13. Yiu BY, Lai SS, Yu AC. Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns. Ultrasound Med Biol. 2014;40:2295–309.

    Article  Google Scholar 

  14. Hansen KL, Nielsen MB, Jensen JA. Vector velocity estimation of blood flow - a new application in medical ultrasound. Ultrasound. 2017;25:189–99.

    Article  Google Scholar 

  15. Dunmire KW, Beach KW, Labs KH, et al. Cross-beam vector Doppler ultrasound for angle independent velocity measurements. Ultrasound Med Biol. 2000;26:1213–35.

    Article  CAS  Google Scholar 

  16. Trahey GE, Allison JW, Ramm OT. Angle independent ultrasonic detection of blood flow. IEEE Trans Biomed Eng. 1987;34:965–7.

    Article  CAS  Google Scholar 

  17. Pihl MJ, Jensen JA. A transverse oscillation approach for estimation of three-dimensional velocity vectors, part I: concept and simulation study. IEEE Trans Ultrasonics Ferroelectrics Frequency Control. 2014;61:1599–607.

    Article  Google Scholar 

  18. Asami R, Tanaka T, Shimizu M, Seki Y, Nishiyama T, Sakashita H, Okada T. Ultrasonic vascular vector flow mapping for 2-D flow estimation. Ultrasound Med Biol. 2019;45(7):1663–74.

    Article  Google Scholar 

  19. Brandt AH, Hansen KL, Ewertsen C, Holbek S, Olesen JB, Moshavegh R, Thomsen C, Jensen JA, Nielsen MB. A comparison study of vector velocity, spectral Doppler and magnetic resonance of blood flow in the common carotid artery. Ultrasound Med Biol. 2018;44:1751–61.

    Article  Google Scholar 

  20. Goddi A, Bortolotto C, Raciti MV, Fiorina I, Aiani L, Magistretti G, Sacchi A, Tinelli C, Calliada F. High-frame rate vector flow imaging of the carotid bifurcation in healthy adults: comparison with color Doppler imaging. J Ultrasound Med. 2018;37:2263–75.

    Article  Google Scholar 

  21. McDonald D. Blood flow in arteries. Baltimore: Williams & Wilkins; 1974.

    Google Scholar 

  22. Gosling RG, King DH. Ultrasound angiology. In: Macus AW, Adamson J, editors. Arteries and Veins. Edinburgh: Churchill-Livingstone; 1975. p. 61–98.

    Google Scholar 

  23. Pourcelot L. Applications clinique de l'examen Doppler transcutance. In: Pourcelot L, editor. Velocimetric ultrasonore Doppler. Paris: INSERM; 1974. p. 213.

    Google Scholar 

  24. Stuart B, Drumm J, FitzGerald DE, Diugnan NM. Fetal blood velocity waveforms in normal pregnancy. Br J Obstet Gynaecol. 1980;87:780–5.

    Article  CAS  Google Scholar 

  25. Campbell S, Diaz-Recasens J, Griffin DR, et al. New Doppler technique for assessing uteroplacetal blood flow. Lancet. 1983;1:675–7.

    Article  CAS  Google Scholar 

  26. Thompson RS, Trudinger BJ, Cook CM. Doppler ultrasound waveforms in the fetal umbilical artery: quantitative analysis technique. Ultrasound Med Biol. 1985;11:707–18.

    Article  CAS  Google Scholar 

  27. Maršál K. Ultrasound assessment of fetal circulation as a diagnostic test: a review. In: Lipshitz J, Maloney J, Nimrod C, Carson G, editors. Perinatal development of the heart and lung. Ithaca, NY: Perinatology Press; 1987. p. 127–42.

    Google Scholar 

  28. Maulik D, Yarlagadda P, Youngblood JP, Ciston P. The diagnostic efficacy of umbilical arterial systolic/diastolic ratio as a screening tool: a prospective blinded study. Am J Obstet Gynecol. 1990;162:1518–23.

    Article  CAS  Google Scholar 

  29. Maulik D, Yarlagadda P, Youngblood JP, Ciston P. Comparative efficacy of umbilical arterial Doppler indices for predicting adverse perinatal outcome. Am J Obstet Gynecol. 1991;164:1434–9.

    Article  CAS  Google Scholar 

  30. Maulik D, Yarlagadda P, Youngblood JP, Willoughby L. Components of variability of umbilical arterial Doppler velocimetry: a prospective analysis. Am J Obstet Gynecol. 1989;160:1406–9.

    Article  CAS  Google Scholar 

  31. Maulik D. Hemodynamic interpretation of the arterial Doppler waveform. Ultrasound Obstet Gynecol. 1993;3(3):219–27.

    Article  CAS  Google Scholar 

  32. Hwang NHC, Norman A. An engineering survey of problems in cardiovascular flow dynamics and measurements. Baltimore: University Park Press; 1977.

    Google Scholar 

  33. Maulik D, Yarlagadda P. In vitro validation of Doppler waveform indices. In: Maulik D, McNellis D, editors. Doppler ultrasound measurement of maternal-fetal hemodynamics. Ithaca, NY: Perinatology Press; 1987. p. 257.

    Google Scholar 

  34. Womersley JR. The mathematical analysis of the arterial circulation in a state of oscillatory motion. Technical report WADC-TR56-614. Wright Air Development Center, Maryland; 1957.

    Google Scholar 

  35. Westerhof N, Sipkema P, Van den Bos GC, Elzinga G. Forward and backward waves in the arterial system. Cardiovasc Res. 1972;6:648–56.

    Article  CAS  Google Scholar 

  36. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Manipulation of ascending aortic pressure and flow ave reflections with Valsalva maneuver: relationship to input impedance. Circulation. 1981;63:122–32.

    Article  CAS  Google Scholar 

  37. Sled JG, Stortz G, Cahill LS, Milligan N, Ayyathurai V, Serghides L, Morgen E, Seravalli V, Delp C, McShane C, Baschat A. Reflected hemodynamic waves influence the pattern of Doppler ultrasound waveforms along the umbilical arteries. Am J Phys Heart Circ Phys. 2019;316(5):H1105–12.

    CAS  Google Scholar 

  38. Spencer JAD, Giussani DA, Moore PJ, Hanson MA. In viro validation of Doppler indices using blood and water. J Ultrasound Med. 1991;10:305–8.

    Article  CAS  Google Scholar 

  39. Maulik D, Yarlagadda P, Nathaniels PW, Figueroa JP. Hemodynamic validation of Doppler assessment of fetoplacental circulation in a sheep model system. J Ultrasound Med. 1989;8:177–81.

    Article  CAS  Google Scholar 

  40. Trudinger BJ, Stevens D, Connelly A, et al. Umbilical artery velocity waveform and placental resistance: the effects of embolization of the umbilical circulation. Am J Obstet Gynecol. 1987;157:1443–8.

    Article  CAS  Google Scholar 

  41. Morrow RJ, Adamson SL, Bull SB, Knox Ritchie JW. Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am J Obstet Gynecol. 1989;161:1055–60.

    Article  CAS  Google Scholar 

  42. Maulik D, Yarlagadda P. Hemodynamic validation of the Doppler indices: an in vitro study (abstract). Presented at the International Perinatal Doppler Society: 3rd Congress, Malibu, CA; 1990.

    Google Scholar 

  43. Downing GJ, Yarlagadda AP, Maulik D. Comparison of the pulsatility index and input impedance parameters in a model of altered hemodynamics. J Ultrasound Med. 1991;10:317–21.

    Article  CAS  Google Scholar 

  44. Downing GJ, Maulik D. Correlation of the pulsatility index (PI) with input impedance parameters during altered hemodynamics (abstract). J Matern Fetal Invest. 1991;1:114.

    Google Scholar 

  45. Downing GJ, Maulik D, Phillips C, Kadado T. In vivo correlation of Doppler waveform analysis with arterial input impedance parameters. Ultrasound Med Biol. 1993;19:549–59.

    Article  CAS  Google Scholar 

  46. Mires G, Dempster J, Patel NM, et al. The effect of fetal heart rate on umbilical artery flow velocity waveform. Br J Obstet Gynaecol. 1987;94:665–9.

    Article  CAS  Google Scholar 

  47. Yarlagadda P, Willoughby L, Maulik D. Effect of fetal heart rate on umbilical artery Doppler indices. J Ultrasound Med. 1989;8(215–218):47.

    Google Scholar 

  48. Maulik D, Downing GJ, Yarlagadda P. Umbilical arterial Doppler indices in acute uteroplacental flow occlusion. Echocardiography. 1990;7:619.

    Article  Google Scholar 

  49. Downing GJ, Yarlagadda P, Maulik D. Effects of acute hypoxemia on umbilical arterial Doppler indices in a fetal ovine model. Early Hum Dev. 1991;25:1–10.

    Article  CAS  Google Scholar 

  50. Legarth J, Thorup E. Characteristics of Doppler blood velocity waveforms in a cardiovascular in vitro model. II. The influence of peripheral resistance, perfusion pressures and blood flow. Scan J Clin Lab Invest. 1989;49:459–64.

    Article  CAS  Google Scholar 

  51. Legarth J, Thorup E. Characteristics of Doppler blood velocity waveforms in a cardiovascular in vitro model. I. the model and the influence of pulse rate. Scand J Clin Lab Invest. 1989;49:451–7.

    Article  CAS  Google Scholar 

  52. Giles WB, Trudinger JB, Baird PJ. Fetal umbilical artery flow velocity waveforms and placental resistance: pathologic correlation. Br J Obstet Gynaecol. 1985;92:31–8.

    Article  CAS  Google Scholar 

  53. Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JC. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol. 1996;175:1534–42.

    Article  CAS  Google Scholar 

  54. Todros T, Sciarrone A, Piccoli E, Guiot C, Kaufmann P, Kingdom J. Umbilical Doppler waveforms and placental villous angiogenesis in pregnancies complicated by fetal growth restriction. Obstet Gynecol. 1999;93:499–503.

    CAS  Google Scholar 

  55. Maulik D, De A, Ragolia L, Evans J, Grigoryev D, Lankachandra K, et al. Down-regulation of placental neuropilin-1 in fetal growth restriction. Am J Obstet Gynecol. 2016;214(2):279–e1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dev Maulik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maulik, D. (2023). Spectral Doppler Sonography: Waveform Analysis and Hemodynamic Interpretation. In: Maulik, D., Lees, C.C. (eds) Doppler Ultrasound in Obstetrics and Gynecology. Springer, Cham. https://doi.org/10.1007/978-3-031-06189-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06189-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06188-2

  • Online ISBN: 978-3-031-06189-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics