Skip to main content

Biomechanical Adaptations of Gait in Pregnancy: Implications for Physical Activity and Exercise

  • Chapter
  • First Online:
Exercise and Physical Activity During Pregnancy and Postpartum

Abstract

During pregnancy, women experience several changes in the body’s physiology, morphology, and hormonal system. These changes may affect the balance and body stability and can cause discomfort and pain. The adaptations of the musculoskeletal system due to morphological changes during pregnancy are not fully understood. Few studies clarify the biomechanical changes of gait that occur during pregnancy and in postpartum. The purpose of this chapter is to analyze the available evidence on the biomechanical adaptations of gait that occur throughout pregnancy and in postpartum, specifically regarding the temporal, spatial, kinematic, and kinetic parameters of gait and balance.

The highlights of this chapter are the following: (1) pregnancy requires biomechanical adjustments as shown by several publications in the last 20 years; (2) adaptations due to pregnancy are recognized to provide safety and stability; (3) most studies performed a temporal, spatial and kinematic analysis, and few studies performed a kinetic analysis; (4) there is lack of consistency in the results of biomechanical studies due to different methodological approaches; (5) the adaptation strategies to the anatomical and physiological changes throughout pregnancy are still unclear, particularly in a longitudinal perspective and regarding kinetic parameters; (6) the main biomechanical adaptations during pregnancy are gait speed reduction, longer double-support time, and increased step width, and ground reaction forces decrease; (7) there is lack of information regarding the effects of physical activity and exercise, risk of falls, and low back pain on the biomechanical adjustments; and (8) exercise adaptations can be provided in order to increase adherence, safety, and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Coordination is defined by the ability to use the senses, such as sight and hearing, together with body parts in performing tasks smoothly and accurately. In [3].

  2. 2.

    Balance is defined by the maintenance of equilibrium while stationary or moving [3].

References

  1. Paisley TS, Joy EA, Price RJ Jr. Exercise during pregnancy: a practical approach. Curr Sports Med Rep. 2003;2(6):325–30.

    PubMed  Google Scholar 

  2. A.C.O.G. Physical activity and exercise during pregnancy and the postpartum period: ACOG committee opinion, number 804. Obstet Gynecol. 2020;135(4):e178–e88. https://doi.org/10.1097/aog.0000000000003772.

    Google Scholar 

  3. American College of Sports Medicine, Riebe D, Ehrman JK, Liguori G, Magal M. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia, PA: Wolters Kluwer; 2018.

    Google Scholar 

  4. Bø K, Artal R, Barakat R, Brown W, Davies GAL, Dooley M, et al. Exercise and pregnancy in recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, Lausanne. Part 1—exercise in women planning pregnancy and those who are pregnant. Br J Sport Med. 2016;50(10):571.

    Google Scholar 

  5. Oken E, Ning Y, Rifas-Shiman SL, Radesky JS, Rich-Edwards JW, Gillman MW. Associations of physical activity and inactivity before and during pregnancy with glucose tolerance. Obstet Gynecol. 2006;108(5):1200–7. https://doi.org/10.1097/01.aog.0000241088.60745.70.

    PubMed  PubMed Central  Google Scholar 

  6. Foxcroft KF, Callaway LK, Byrne NM, Webster J. Development and validation of a pregnancy symptoms inventory. BMC Pregnan Childb. 2013;13(1):3. https://doi.org/10.1186/1471-2393-13-3.

    Google Scholar 

  7. Borg-Stein J, Dugan SA, Gruber J. Musculoskeletal aspects of pregnancy. Am J Phys Med Rehabil. 2005;84(3):180–92.

    PubMed  Google Scholar 

  8. Domingues MR, Barros AJ. Leisure-time physical activity during pregnancy in the 2004 Pelotas Birth Cohort Study. Rev Saude Publica. 2007;41(2):173–80.

    PubMed  Google Scholar 

  9. Pereira MA, Rifas-Shiman SL, Kleinman KP, Rich-Edwards JW, Peterson KE, Gillman MW. Predictors of change in physical activity during and after pregnancy: project Viva. Am J Prev Med. 2007;32(4):312–9. https://doi.org/10.1016/j.amepre.2006.12.017.

    PubMed  PubMed Central  Google Scholar 

  10. Borodulin K, Evenson KR, Monda K, Wen F, Herring AH, Dole N. Physical activity and sleep among pregnant women. Paediatr Perinat Epidemiol. 2010;24(1):45–52. https://doi.org/10.1111/j.1365-3016.2009.01081.x.

    PubMed  PubMed Central  Google Scholar 

  11. DiNallo JM, Williams NI, Downs DS, Le Masurier GC. Walking for health in pregnancy. Res Q Exerc Sport. 2008;79(1):28–35. https://doi.org/10.1080/02701367.2008.10599457.

    PubMed  Google Scholar 

  12. Owe KM, Nystad W, Bø K. Correlates of regular exercise during pregnancy: the Norwegian Mother and Child Cohort Study. Scand J Med Sci Sports. 2009;19(5):637–45. https://doi.org/10.1111/j.1600-0838.2008.00840.x.

    CAS  PubMed  Google Scholar 

  13. Evenson KR, Wen F. National trends in self-reported physical activity and sedentary behaviors among pregnant women: NHANES 1999–2006. Prev Med. 2010;50(3):123–8. https://doi.org/10.1016/j.ypmed.2009.12.015.

    PubMed  Google Scholar 

  14. Walsh JM, McGowan CA, Mahony R, Foley ME, McAuliffe FM. Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. BMJ. 2012;345:e5605.

    PubMed  PubMed Central  Google Scholar 

  15. Hegaard HK, Damm P, Hedegaard M, Henriksen TB, Ottesen B, Dykes A-K, et al. Sports and leisure time physical activity during pregnancy in nulliparous women. Matern Child Health J. 2011;15(6):806–13. https://doi.org/10.1007/s10995-010-0647-y.

    PubMed  Google Scholar 

  16. Tinloy J, Chuang CH, Zhu J, Pauli J, Kraschnewski JL, Kjerulff KH. Exercise during pregnancy and risk of late preterm birth, cesarean delivery, and hospitalizations. Womens Health Issues. 2014;24(1):e99–e104. https://doi.org/10.1016/j.whi.2013.11.003.

    PubMed  PubMed Central  Google Scholar 

  17. Liu L, Su H, Yu M. Full-term delivery in a pregnant breast cancer patient. Acta Obstet Gynecol Scand. 2011;90(12):1454. https://doi.org/10.1111/j.1600-0412.2011.01095.x.

    PubMed  Google Scholar 

  18. Barakat R, Perales M, Garatachea N, Ruiz JR, Lucia A. Exercise during pregnancy. A narrative review asking: what do we know? Br J Sports Med. 2015;49(21):1377–81. https://doi.org/10.1136/bjsports-2015-094756.

    PubMed  Google Scholar 

  19. Wastnedge EAN, Reynolds RM, van Boeckel SR, Stock SJ, Denison FC, Maybin JA, et al. Pregnancy and COVID-19. Physiol Rev. 2020;101(1):303–18. https://doi.org/10.1152/physrev.00024.2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Segal NA, Chu SR. Musculoskeletal anatomic, gait, and balance changes in pregnancy and risk for falls. In: Fitzgerald CM, Segal NA, editors. Musculoskeletal health in pregnancy and postpartum: an evidence-based guide for clinicians. Cham: Springer International Publishing; 2015. p. 1–18.

    Google Scholar 

  21. Reese ME, Casey E. Hormonal influence on the neuromusculoskeletal system in pregnancy. In: Fitzgerald CM, Segal NA, editors. Musculoskeletal health in pregnancy and postpartum: an evidence-based guide for clinicians. Cham: Springer International Publishing; 2015. p. 19–39.

    Google Scholar 

  22. Anselmo DS, Love E, Tango DN, Robinson L. Musculoskeletal effects of pregnancy on the lower extremity: a literature review. J Am Podiatr Med Assoc. 2017;107(1):60–4. https://doi.org/10.7547/15-061.

    PubMed  Google Scholar 

  23. Institute of Medicine and National Research Council of the National Academies. Weight gain during pregnancy: reexamining the guidelines. Washington, DC: The National Academies Press; 2009.

    Google Scholar 

  24. Wang TW, Apgar BS. Exercise during pregnancy. Am Fam Physician. 1998;57(8):1846–52, 57.

    CAS  PubMed  Google Scholar 

  25. Whitcome KK, Shapiro LJ, Lieberman DE. Fetal load and the evolution of lumbar lordosis in bipedal hominins. Nature. 2007;450(7172):1075–U11. https://doi.org/10.1038/nature06342.

    CAS  PubMed  Google Scholar 

  26. Cunningham FG. Williams obstetrics. 25th ed. New York, NY: McGraw-Hill; 2018.

    Google Scholar 

  27. Ostgaard HC, Andersson GB, Schultz AB, Miller JA. Influence of some biomechanical factors on low-back pain in pregnancy. Spine (Phila Pa 1976). 1993;18(1):61–5.

    CAS  Google Scholar 

  28. Gilleard WL, Brown JM. Structure and function of the abdominal muscles in primigravid subjects during pregnancy and the immediate postbirth period. Phys Ther. 1996;76(7):750–62.

    CAS  PubMed  Google Scholar 

  29. Foti T, Davids JR, Bagley A. A biomechanical analysis of gait during pregnancy. J Bone Joint Surg Am. 2000;82A(5):625–32.

    Google Scholar 

  30. Gutke A, Ostgaard HC, Oberg B. Predicting persistent pregnancy-related low back pain. Spine (Phila Pa 1976). 2008;33(12):E386–93. https://doi.org/10.1097/BRS.0b013e31817331a4.

    Google Scholar 

  31. Wang SM, Dezinno P, Maranets I, Berman MR, Caldwell-Andrews AA, Kain ZN. Low back pain during pregnancy: prevalence, risk factors, and outcomes. Obstet Gynecol. 2004;104(1):65–70. https://doi.org/10.1097/01.AOG.0000129403.54061.0e.

    PubMed  Google Scholar 

  32. Mogren IM, Pohjanen AI. Low back pain and pelvic pain during pregnancy: prevalence and risk factors. Spine (Phila Pa 1976). 2005;30(8):983–91. https://doi.org/10.1097/01.brs.0000158957.42198.8e.

    Google Scholar 

  33. Ng BK, Kipli M, Abdul Karim AK, Shohaimi S, Abdul Ghani NA, Lim PS. Back pain in pregnancy among office workers: risk factors and its impact on quality of life. Horm Mol Biol Clin Invest. 2017;32(3) https://doi.org/10.1515/hmbci-2017-0037.

  34. Aldabe D, Milosavljevic S, Bussey MD. Is pregnancy related pelvic girdle pain associated with altered kinematic, kinetic and motor control of the pelvis? A systematic review. Eur Spine J. 2012;21(9):1777–87. https://doi.org/10.1007/s00586-012-2401-1.

    PubMed  PubMed Central  Google Scholar 

  35. Monteiro M, Gabriel R, Aranha J, Neves e Castro M, Sousa M, Moreira M. Influence of obesity and sarcopenic obesity on plantar pressure of postmenopausal women. Clin Biomech. 2010;25(5):461–7. https://doi.org/10.1016/j.clinbiomech.2010.01.017.

    CAS  Google Scholar 

  36. Woo J, Leung J, Kwok T. BMI, body composition, and physical functioning in older adults. Obesity. 2007;15(7):1886–94. https://doi.org/10.1038/oby.2007.223.

    PubMed  Google Scholar 

  37. Bosch K, Nagel A, Weigend L, Rosenbaum D. From “first” to “last” steps in life – pressure patterns of three generations. Clin Biomech. 2009;24(8):676–81. https://doi.org/10.1016/j.clinbiomech.2009.06.001.

    Google Scholar 

  38. Ramachandra P, Kumar P, Kamath A, Maiya AG. Do structural changes of the foot influence plantar pressure patterns during various stages of pregnancy and postpartum? Foot Ankle Spec. 2017;10(6):513–9. https://doi.org/10.1177/1938640016685150.

    PubMed  Google Scholar 

  39. Varol T, Göker A, Cezayirli E, Özgür S, Tuç Yücel A. Relation between foot pain and plantar pressure in pregnancy. Turk J Med Sci. 2017;47(4):1104–8. https://doi.org/10.3906/sag-1601-185.

    PubMed  Google Scholar 

  40. Butler EE, Druzin M, Sullivan EV. Gait adaptations in adulthood: pregnancy, aging, and alcoholism. In: Rose J, Gamble JG, editors. Human walking. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006. p. 131–48.

    Google Scholar 

  41. Hong Y, Bartlett R. Routledge handbook of biomechanics and human movement science. Routledge international handbooks. London; New York, NY: Routledge; 2010.

    Google Scholar 

  42. Nigg BM, Herzog W. Biomechanics of the musculo-skeletal system. 3rd ed. Hoboken, NJ: John Wiley & Sons; 2007.

    Google Scholar 

  43. Flanagan SP. Biomechanics: a case-based approach. 2nd ed. Burlington, MA: Jones & Bartlett Learning; 2019.

    Google Scholar 

  44. Elliott B. Biomechanics: an integral part of sport science and sport medicine. J Sci Med Sport. 1999;2(4):299–310. https://doi.org/10.1016/S1440-2440(99)80003-6.

    CAS  PubMed  Google Scholar 

  45. Brüggemann G-P, Potthast W, Braunstein B, Niehoff A. Effect of increased mechanical stimuli on foot muscles functional capacity. In: Cavanagh PR, Crago PE, editors. XXth Congress of the International Society of Biomechanics and 29th Annual Meeting of the American Society of Biomechanics. Cleveland, OH: International Society of Biomechanics; 2005.

    Google Scholar 

  46. Nicholls JA, Grieve DW. Performance of physical tasks in pregnancy. Ergonomics. 1992;35(3):301–11. https://doi.org/10.1080/00140139208967815.

    CAS  PubMed  Google Scholar 

  47. Perry J. Gait analysis: normal and pathological function. Thorofare, NJ: SLACK; 1992.

    Google Scholar 

  48. Forczek W, Staszkiewicz R. Changes of kinematic gait parameters due to pregnancy. Acta Bioeng Biomech. 2012;14(4):113–9. https://doi.org/10.5277/abb120413.

    PubMed  Google Scholar 

  49. Lymbery JK, Gilleard W. The stance phase of walking during late pregnancy - temporospatial and ground reaction force variables. J Am Podiat Med Assoc. 2005;95(3):247–53. https://doi.org/10.7547/0950247.

    Google Scholar 

  50. Gilleard WL. Trunk motion and gait characteristics of pregnant women when walking: report of a longitudinal study with a control group. BMC Pregnan Childb. 2013;13:71. https://doi.org/10.1186/1471-2393-13-71.

    Google Scholar 

  51. Bartlett R. Introduction to sports biomechanics: analysing human movement patterns. 3rd ed. Abingdon: Routledge; 2019.

    Google Scholar 

  52. Branco M, Santos-Rocha R, Vieira F, Aguiar L, Veloso AP. Three-dimensional kinematic adaptations of gait throughout pregnancy and postpartum. Acta Bioeng Biomech. 2016;18(2):153. https://doi.org/10.5277/ABB-00418-2015-05.

    PubMed  Google Scholar 

  53. Abdel-Aziz YI, Karara HM, Hauck M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry*. Photogramm Eng Remote Sens. 2015;81(2):103–7. https://doi.org/10.14358/PERS.81.2.103.

    Google Scholar 

  54. Bartlett R. Introduction to sports biomechanics: analysing human movement patterns. 2nd ed. Abingdon, Oxon; New York, NY: Routledge; 2007.

    Google Scholar 

  55. Richards J. Biomechanics in clinic and research: an interactive teaching and learning course. Edinburgh; New York, NY: Churchill Livingstone/Elsevier; 2008.

    Google Scholar 

  56. Robertson DGE, Caldwell GE, Hamill J, Kamen G, Whittlesey SN. Research methods in biomechanics. 2nd ed. Champaign, IL: Human Kinetics; 2014.

    Google Scholar 

  57. Winter DA. Biomechanics and motor control of human movement. 4th ed. Hoboken, NJ: Wiley; 2009.

    Google Scholar 

  58. Nigg BM, Liu W. The effect of muscle stiffness and damping on simulated impact force peaks during running. J Biomech. 1999;32(8):849–56. https://doi.org/10.1016/S0021-9290(99)00048-2.

    CAS  PubMed  Google Scholar 

  59. Miller D. Ground reaction forces in distance running. In: Cavanagh P, editor. Biomechanics of distance running. Champaign, IL: Human Kinetics; 1990.

    Google Scholar 

  60. Peterson DR, Bronzino JD. Biomechanics: principles and applications. Boca Raton, FL. London: CRC, Taylor & Francis; 2008.

    Google Scholar 

  61. Whittle M. Gait analysis: an introduction. 4th ed. Edinburgh; New York, NY: Butterworth-Heinemann; 2007.

    Google Scholar 

  62. Inman DJ, Soutas-Little R. Engineering mechanics: dynamics. Hoboken, NJ: Prentice Hall PTR; 1998.

    Google Scholar 

  63. Nigg BM, MacIntosh BR, Mester J. Biomechanics and biology of movement. Champaign, IL: Human Kinetics; 2000.

    Google Scholar 

  64. Watkins J. Structure and function of the musculoskeletal system. 2nd ed. Champaign, IL: Human Kinetics; 2010.

    Google Scholar 

  65. Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31(1):45–50.

    PubMed  Google Scholar 

  66. Witzke KA, Snow CM. Effects of plyometric jump training on bone mass in adolescent girls. Med Sci Sports Exerc. 2000;32(6):1051–7.

    CAS  PubMed  Google Scholar 

  67. Hohmann E, Reaburn P, Tetsworth K, Imhoff A. Plantar pressures during long distance running: an investigation of 10 marathon runners. J Sports Sci Med. 2016;15(2):254–62.

    PubMed  PubMed Central  Google Scholar 

  68. Hennig EM, Milani TL. Shoe pressure distribution for running in various types of footwear. J Appl Biomech. 1995;11(3):299–310. https://doi.org/10.1123/jab.11.3.299.

    Google Scholar 

  69. Hughes J, Pratt L, Linge K, Clark P, Klenerman L. Reliability of pressure measurements: the EM ED F system. Clin Biomech. 1991;6(1):14–8. https://doi.org/10.1016/0268-0033(91)90036-P.

    CAS  Google Scholar 

  70. Santos-Rocha R, Veloso A. Comparative study of plantar pressure during step exercise in different floor conditions. J Appl Biomech. 2007;23(2):162–8. https://doi.org/10.1123/jab.23.2.162.

    PubMed  Google Scholar 

  71. Abdul Razak AH, Zayegh A, Begg RK, Wahab Y. Foot plantar pressure measurement system: a review. Sensors. 2012;12(7):9884.

    PubMed  Google Scholar 

  72. Robinson CC, Balbinot LF, Silva MF, Achaval M, Zaro MA. Plantar pressure distribution patterns of individuals with prediabetes in comparison with healthy individuals and individuals with diabetes. J Diabetes Sci Technol. 2013;7(5):1113–21. https://doi.org/10.1177/193229681300700503.

    PubMed  PubMed Central  Google Scholar 

  73. Keijsers NLW, Stolwijk NM, Louwerens JWK, Duysens J. Classification of forefoot pain based on plantar pressure measurements. Clin Biomech. 2013;28(3):350–6. https://doi.org/10.1016/j.clinbiomech.2013.01.012.

    CAS  Google Scholar 

  74. Amemiya A, Noguchi H, Oe M, Ohashi Y, Ueki K, Kadowaki T, et al. Elevated plantar pressure in diabetic patients and its relationship with their gait features. Gait Posture. 2014;40(3):408–14. https://doi.org/10.1016/j.gaitpost.2014.05.063.

    PubMed  Google Scholar 

  75. Butterworth PA, Landorf KB, Gilleard W, Urquhart DM, Menz HB. The association between body composition and foot structure and function: a systematic review. Obes Rev. 2014;15(4):348–57. https://doi.org/10.1111/obr.12130.

    CAS  PubMed  Google Scholar 

  76. O’Brien DL, Tyndyk M. Effect of arch type and Body Mass Index on plantar pressure distribution during stance phase of gait. Acta Bioeng Biomech. 2014;16(2):131–5.

    PubMed  Google Scholar 

  77. Mickle KJ, Munro BJ, Lord SR, Menz HB, Steele JR. Foot pain, plantar pressures, and falls in older people: a prospective study. J Am Geriatr Soc. 2010;58(10):1936–40. https://doi.org/10.1111/j.1532-5415.2010.03061.x.

    PubMed  Google Scholar 

  78. Fernando M, Crowther R, Lazzarini P, Sangla K, Cunningham M, Buttner P, et al. Biomechanical characteristics of peripheral diabetic neuropathy: a systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clin Biomech. 2013;28(8):831–45. https://doi.org/10.1016/j.clinbiomech.2013.08.004.

    Google Scholar 

  79. Justin S, Joshua B, Roger A, Evangelos P, Jack C. Musculoskeletal and activity-related factors associated with plantar heel pain. Foot Ankle Int. 2014;36(1):37–45. https://doi.org/10.1177/1071100714551021.

    Google Scholar 

  80. Ramalho F, Santos-Rocha R, Branco M, Moniz-Pereira V, André H-I, Veloso A, et al. Effect of 6-month community-based exercise interventions on gait and functional fitness of an older population: a quasi-experimental study. Clin Interv Aging. 2018;13:595–606. https://doi.org/10.2147/cia.s157224.

    PubMed  PubMed Central  Google Scholar 

  81. Shin Jin H, Lee Joong S, Han Ki H, Bae Kang H. Effects of foot strengthening exercises and functional insole on range of motion and foot plantar pressure in elderly women. J Kor Soc Kinesiol. 2018;28(1):45–54. https://doi.org/10.5103/KJSB.2018.28.1.45.

    Google Scholar 

  82. Rowlands C, Plumb MS. The effects of a 4-week barefoot exercise intervention on plantar pressure, impact, balance and pain in injured recreational runners: a pilot study. Int J Osteopath Med. 2019;33:1–7. https://doi.org/10.1016/j.ijosm.2019.10.005.

    Google Scholar 

  83. Lee NK, Kwon JW, Son SM, Nam SH, Choi YW, Kim CS. Changes of plantar pressure distributions following open and closed kinetic chain exercise in patients with stroke. Neurorehabilitation. 2013;32:385–90. https://doi.org/10.3233/NRE-130859.

    PubMed  Google Scholar 

  84. Molina-Garcia P, Miranda-Aparicio D, Molina-Molina A, Plaza-Florido A, Migueles JH, Mora-Gonzalez J, et al. Effects of exercise on plantar pressure during walking in children with overweight/obesity. Med Sci Sports Exerc. 2020;52(3):654.

    PubMed  Google Scholar 

  85. Jimenez EMM, Velazquez JID, Gomez RS, Nuno FS, Hernandez IC, Castells XG. Experimental studies of gait biomechanics during pregnancy: systematic review of clinical trials. (2000-2018). Revista Internacional De Ciencias Podologicas. 2019;13(2):77–86. https://doi.org/10.5209/ricp.64723.

    Google Scholar 

  86. Ribeiro AP, João SMA, Sacco ICN. Static and dynamic biomechanical adaptations of the lower limbs and gait pattern changes during pregnancy. Women Health. 2013;9(1):99–108. https://doi.org/10.2217/whe.12.59.

    CAS  Google Scholar 

  87. Branco M, Santos-Rocha R, Vieira F. Biomechanics of gait during pregnancy. Sci World J. 2014;2014:5. https://doi.org/10.1155/2014/527940.

    Google Scholar 

  88. Anselmo DS, Love E, Tango DN, Robinson L. Musculoskeletal effects of pregnancy on the lower extremity: a literature review. J Am Podiat Med Assoc. 2017;107(1):60–4. https://doi.org/10.7547/15-061.

    Google Scholar 

  89. Forczek W, Ivanenko YP, Bielatowicz J, Wacławik K. Gait assessment of the expectant mothers - systematic review. Gait Posture. 2018;62:7–19. https://doi.org/10.1016/j.gaitpost.2018.02.024.

    PubMed  Google Scholar 

  90. Wong JKL, McGregor AH. Spatiotemporal gait changes in healthy pregnant women and women with pelvic girdle pain: a systematic review. J Back Musculoskelet Rehabil. 2018;31(5):821–38. https://doi.org/10.3233/bmr-170828.

    PubMed  Google Scholar 

  91. Conder R, Zamani R, Akrami M. The biomechanics of pregnancy: a systematic review. J Funct Morphol Kinesiol. 2019;4(4):72. https://doi.org/10.3390/jfmk4040072.

    PubMed Central  Google Scholar 

  92. Ribeiro AP. Posture and gait biomechanical aspects during pregnancy and the importance of therapeutic exercise: literature review. Curr Women’s Health Rev. 2015;11(1):51–8. https://doi.org/10.2174/157340481101150914201529.

    Google Scholar 

  93. Salazar NQ. Alteraciones musculoesqueléticas y adaptaciones biomecánicas durante los trimestres de embarazo: una revisión sistemática. Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud. 2021;19(1):e44961. https://doi.org/10.15517/pensarmov.v19i1.44961.

    Google Scholar 

  94. Hrvatin I, Rugelj D. Risk factors for accidental falls during pregnancy - a systematic literature review. J Matern Fetal Neonatal Med. 2021:1–10. https://doi.org/10.1080/14767058.2021.1935849.

  95. Nyska M, Sofer D, Porat A, Howard CB, Levi A, Meizner I. Planter foot pressures in pregnant women. Isr J Med Sci. 1997;33(2):139–46.

    CAS  PubMed  Google Scholar 

  96. Goldberg J, Besser MP, Selby-Silverstein L. Changes in foot function throughout pregnancy. Obstet Gynecol. 2001;97(4):S39. https://doi.org/10.1016/S0029-7844(01)01235-2.

    Google Scholar 

  97. Huang T-H, Lin S-C, Ho C-S, Yu C-Y, Chou Y-L. The gait analysis of pregnant women. Biomed Eng Appl Basis Commun. 2002;14(2):4. https://doi.org/10.4015/s1016237202000103.

    CAS  Google Scholar 

  98. Ribas SI, Guirro ECO. Analysis of plantar pressure and postural balance during different phases of pregnancy. Rev Bras Fis. 2007;11(5):391–6.

    Google Scholar 

  99. Carpes F, Griebeler D, Kleinpaul J, Mann L, Mota C. Women able-bodied gait kinematics during and post pregnancy period. Brazilian. J Biomech. 2008;9(16):33.

    Google Scholar 

  100. Gaymer C, Whalley H, Achten J, Vatish M, Costa ML. Midfoot plantar pressure significantly increases during late gestation. Foot. 2009;19(2):114–6. https://doi.org/10.1016/j.foot.2009.02.001.

    CAS  PubMed  Google Scholar 

  101. Karadag-Saygi E, Unlu-Ozkan F, Basgul A. Plantar pressure and foot pain in the last trimester of pregnancy. Foot Ankle Int. 2010;31(2):153–7. https://doi.org/10.3113/FAI.2010.0153.

    PubMed  Google Scholar 

  102. Hagan L, Wong CK. Gait in pregnant women: spinal and lower extremity changes from pre- to postpartum. J Women’s Health Phys Therapy. 2010;34(2):46–56. https://doi.org/10.1097/jwh.0b013e3181e8fd4d.

    Google Scholar 

  103. Ribeiro AP, Trombini-Souza F, Sacco IDN, Ruano R, Zugaib M, Joao SMA. Changes in the plantar pressure distribution during gait throughout gestation. J Am Podiat Med Assoc. 2011;101(5):415–23.

    Google Scholar 

  104. McCrory JL, Chambers AJ, Daftary A, Redfern MS. Ground reaction forces during gait in pregnant fallers and non-fallers. Gait Posture. 2011;34(4):524–8. https://doi.org/10.1016/j.gaitpost.2011.07.007.

    PubMed  Google Scholar 

  105. Moccellin AS, Driusso P. Adjustments in static and dynamic postural control during pregnancy and their relationship with quality of life: a descriptive study. Fisioterapia. 2012;34(5):196–202. https://doi.org/10.1016/j.ft.2012.03.004.

    Google Scholar 

  106. Branco M, Santos-Rocha R, Aguiar L, Vieira F, Veloso AP. Kinematic analysis of gait in the second and third trimesters of pregnancy. J Pregnancy. 2013;2013:718095. https://doi.org/10.1155/2013/718095.

    PubMed  PubMed Central  Google Scholar 

  107. Sunaga Y, Anan M, Shinkoda K. Biomechanics of rising from a chair and walking in pregnant women. Appl Ergon. 2013;44(5):792–8. https://doi.org/10.1016/j.apergo.2013.01.010.

    PubMed  Google Scholar 

  108. Aguiar L, Santos-Rocha R, Vieira F, Branco M, Andrade C, Veloso A. Comparison between overweight due to pregnancy and due to added weight to simulate body mass distribution in pregnancy. Gait Posture. 2015;42(4):511–7. https://doi.org/10.1016/j.gaitpost.2015.07.065.

    PubMed  Google Scholar 

  109. Branco M, Santos-Rocha R, Vieira F, Aguiar L, Veloso AP. Three-dimensional kinetic adaptations of gait throughout pregnancy and postpartum. Scientifica. 2015;2015:580374. https://doi.org/10.1155/2015/580374.

    PubMed  PubMed Central  Google Scholar 

  110. Yoo H, Shin D, Song C. Changes in the spinal curvature, degree of pain, balance ability, and gait ability according to pregnancy period in pregnant and nonpregnant women. J Phys Ther Sci. 2015;27(1):279–84.

    PubMed  PubMed Central  Google Scholar 

  111. Gimunova M, Kasović M, Zvonar M, Turčínek P, Matković B, Ventruba P, et al. Analysis of ground reaction force in gait during different phases of pregnancy. Kinesiology. 2015;47(2):236–41.

    Google Scholar 

  112. Bertuit J, Leyh C, Rooze M, Feipel V. Plantar pressure during gait in pregnant women. J Am Podiat Med Assoc. 2016;106(6):398–405.

    Google Scholar 

  113. Branco M, Santos-Rocha R, Aguiar L, Vieira F, Veloso AP. Kinetic analysis of gait in the second and third trimesters of pregnancy. J Mech Med Biol. 2016;16(4):1. https://doi.org/10.1142/S021951941650055x.

    Google Scholar 

  114. Blaszczyk JW, Opala-Berdzik A, Plewa M. Adaptive changes in spatiotemporal gait characteristics in women during pregnancy. Gait Posture. 2016;43:160–4. https://doi.org/10.1016/j.gaitpost.2015.09.016.

    PubMed  Google Scholar 

  115. Ramachandra P, Kumar P, Kamath A, Maiya AG. Do structural changes of the foot influence plantar pressure patterns during various stages of pregnancy and postpartum? Foot Ankle Spec. 2016;10:513. https://doi.org/10.1177/1938640016685150.

    PubMed  Google Scholar 

  116. Elsayed E, Devreux I, Embaby H, Alsayed A, Alshehri M. Changes in foot plantar pressure in pregnant women. J Back Musculoskelet Rehabil. 2017;30(4):863–7. https://doi.org/10.3233/BMR-160555.

    PubMed  Google Scholar 

  117. Krkeljas Z. Changes in gait and posture as factors of dynamic stability during walking in pregnancy. Hum Mov Sci. 2018;58:315–20. https://doi.org/10.1016/j.humov.2017.12.011.

    PubMed  Google Scholar 

  118. Mei Q, Gu Y, Fernandez J. Alterations of pregnant gait during pregnancy and post-partum. Sci Rep. 2018;8(1):2217. https://doi.org/10.1038/s41598-018-20648-y.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Christensen L, Veierod MB, Vollestad NK, Jakobsen VE, Stuge B, Cabri J, et al. Kinematic and spatiotemporal gait characteristics in pregnant women with pelvic girdle pain, asymptomatic pregnant and non-pregnant women. Clin Biomech. 2019;68:45–52. https://doi.org/10.1016/j.clinbiomech.2019.05.030.

    Google Scholar 

  120. Martínez-Martí F, Ocón-Hernández O, Martínez-García MS, Torres-Ruiz F, Martínez-Olmos A, Carvajal MA, et al. Plantar pressure changes and their relationships with low back pain during pregnancy using instrumented insoles. J Sensors. 2019;2019:1567584. https://doi.org/10.1155/2019/1567584.

    Google Scholar 

  121. Mikeska O, Gimunova M, Zvonar M. Assessment of distribution of plantar pressures and foot characteristics during walking in pregnant women. Acta Bioeng Biomech. 2019;21(3):49–56. https://doi.org/10.5277/abb-01373-2019-04.

    PubMed  Google Scholar 

  122. Forczek W, Masłoń A, Frączek B, Curyło M, Salamaga M, Suder A. Does the first trimester of pregnancy induce alterations in the walking pattern? PLoS One. 2019;14(1):e0209766. https://doi.org/10.1371/journal.pone.0209766.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Forczek W, Ivanenko Y, Salamaga M, Sylos-Labini F, Frączek B, Masłoń A, et al. Pelvic movements during walking throughout gestation - the relationship between morphology and kinematic parameters. Clin Biomech. 2020;71:146–51. https://doi.org/10.1016/j.clinbiomech.2019.11.001.

    CAS  Google Scholar 

  124. Bagwell JJ, Reynolds N, Walaszek M, Runez H, Lam K, Armour Smith J, et al. Lower extremity kinetics and muscle activation during gait are significantly different during and after pregnancy compared to nulliparous females. Gait Posture. 2020;81:33–40. https://doi.org/10.1016/j.gaitpost.2020.07.002.

    PubMed  Google Scholar 

  125. Song Y, Liang M, Lian W. A comparison of foot kinematics between pregnant and non-pregnant women using the Oxford foot model during walking. Int J Biomed Eng Technol. 2020;34(1):20–30. https://doi.org/10.1504/IJBET.2020.110335.

    Google Scholar 

  126. Pauk J, Swinarska D, Daunoraviciene K. Mechanisms of gait adaptation in overweight pregnant women. J Am Podiat Med Assoc. 2020;110(4):2. https://doi.org/10.7547/17-177.

    Google Scholar 

  127. Catena RD, Wolcott WC. Self-selection of gestational lumbopelvic posture and bipedal evolution. Gait Posture. 2021;89:7–13. https://doi.org/10.1016/j.gaitpost.2021.06.022.

    PubMed  Google Scholar 

  128. Aguiar L, Andrade C, Branco M, Santos-Rocha R, Vieira F, Veloso A. Global optimization method applied to the kinematics of gait in pregnant women. J Mech Med Biol. 2016;16(6):1. https://doi.org/10.1142/S0219519416500846.

    Google Scholar 

  129. Aguiar L, Santos-Rocha R, Branco M, Vieira F, Veloso A. Biomechanical model for kinetic and kinematic description of gait during second trimester of pregnancy to study the effects of biomechanical load on the musculoskeletal system. J Mech Med Biol. 2014;14(1):1450004. https://doi.org/10.1142/S0219519414500043.

    Google Scholar 

  130. Rodacki CL, Fowler NE, Rodacki AL, Birch K. Stature loss and recovery in pregnant women with and without low back pain. Arch Phys Med Rehabil. 2003;84(4):507–12. https://doi.org/10.1053/apmr.2003.50119.

    PubMed  Google Scholar 

  131. Fries EC, Hellebrandt FA. The influence of pregnancy on the location of the center of gravity, postural stability, and body alignment. Am J Obstet Gynecol. 1943;46:374–80.

    Google Scholar 

  132. Opala-Berdzik A, Bacik B, Cieślińska-Świder J, Plewa M, Gajewska M. The influence of pregnancy on the location of the center of gravity in standing position. J Hum Kinet. 2010;2010(26):5–11. https://doi.org/10.2478/v10078-010-0042-1.

    Google Scholar 

  133. Calguneri M, Bird HA, Wright V. Changes in joint laxity occurring during pregnancy. Ann Rheum Dis. 1982;41(2):126–8. https://doi.org/10.1136/ard.41.2.126.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Schauberger CW, Rooney BL, Goldsmith L, Shenton D, Silva PD, Schaper A. Peripheral joint laxity increases in pregnancy but does not correlate with serum relaxin levels. Am J Obstet Gynecol. 1996;174(2):667–71. https://doi.org/10.1016/S0002-9378(96)70447-7.

    CAS  PubMed  Google Scholar 

  135. Jang J, Hsiao KT, Hsiao-Wecksler ET. Balance (perceived and actual) and preferred stance width during pregnancy. Clin Biomech. 2008;23(4):468–76. https://doi.org/10.1016/j.clinbiomech.2007.11.011.

    Google Scholar 

  136. Sancar Ş, Atalay Güzel N, Çobanoğlu G, Özdemir Y, Bayram M. The changes in static balance during pregnancy: a prospective longitudinal study. Clin Exp Health Sci. 2021;11:127. https://doi.org/10.33808/clinexphealthsci.744603.

    Google Scholar 

  137. Catena RD, Connolly CP, McGeorge KM, Campbell N. A comparison of methods to determine center of mass during pregnancy. J Biomech. 2018;71:217–24. https://doi.org/10.1016/j.jbiomech.2018.02.004.

    PubMed  Google Scholar 

  138. Branco M, Santos-Rocha R, Vieira F, Silva MR, Aguiar L, Veloso AP. Influence of body composition on gait kinetics throughout pregnancy and postpartum period. Scientifica. 2016;2016:3921536. https://doi.org/10.1155/2016/3921536.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Paisley JE, Mellion MB. Exercise during Pregnancy. Am Fam Physician. 1988;38(5):143–50.

    CAS  PubMed  Google Scholar 

  140. Gilleard W, Crosbie J, Smith R. Effect of pregnancy on trunk range of motion when sitting and standing. Acta Obstet Gynecol Scand. 2002;81(11):1011–20.

    PubMed  Google Scholar 

  141. Vullo VJ, Richardson JK, Hurvitz EA. Hip, knee, and foot pain during pregnancy and the postpartum period. J Fam Pract. 1996;43:63.

    CAS  PubMed  Google Scholar 

  142. Bertuit J, Leyh C, Feipel V. Center of plantar pressure during gait in pregnancy-related pelvic girdle pain and the effect of pelvic belts. Acta Bioeng Biomech. 2018;20(3):69–76. https://doi.org/10.5277/abb-01141-2018-02.

    PubMed  Google Scholar 

  143. Vico Pardo FJ, López Del Amo A, Pardo Rios M, Gijon-Nogueron G, Yuste CC. Changes in foot posture during pregnancy and their relation with musculoskeletal pain: a longitudinal cohort study. Women Birth. 2018;31(2):e84–e8. https://doi.org/10.1016/j.wombi.2017.08.114.

    PubMed  Google Scholar 

  144. Albino MA, Moccellin AS, Firmento Bda S, Driusso P. [Gait force propulsion modifications during pregnancy: effects of changes in feet’s dimensions]. Revista Brasileira de Ginecologia e Obstetricia 2011;33(7):164–9.

    Google Scholar 

  145. Inanir A, Cakmak B, Hisim Y, Demirturk F. Evaluation of postural equilibrium and fall risk during pregnancy. Gait Posture. 2014;39(4):1122–5. https://doi.org/10.1016/j.gaitpost.2014.01.013.

    PubMed  Google Scholar 

  146. Gottschall JS, Sheehan RC, Downs DS. Pregnant women exaggerate cautious gait patterns during the transition between level and hill surfaces. J Electromyogr Kinesiol. 2013;23(5):1237–42. https://doi.org/10.1016/j.jelekin.2013.04.011.

    PubMed  Google Scholar 

  147. Wallberg CD, Smart DM, Mackelprang JL, Graves JM. Stair-related injuries among pregnant women treated in united states emergency departments. Matern Child Health J. 2021;25(6):892–9. https://doi.org/10.1007/s10995-021-03141-3.

    PubMed  Google Scholar 

  148. Kavurmaci SA, Gulbahar A. Physical trauma etiologies in pregnancy in Turkey. Clin Exp Obstet Gynecol. 2021;48(2):292–8. https://doi.org/10.31083/j.ceog.2021.02.2268.

    Google Scholar 

  149. McCrory JL, Chambers AJ, Daftary A, Redfern MS. Ground reaction forces during stair locomotion in pregnancy. Gait Posture. 2013;38(4):684–90. https://doi.org/10.1016/j.gaitpost.2013.03.002.

    PubMed  Google Scholar 

  150. Ersal T, McCrory JL, Sienko KH. Theoretical and experimental indicators of falls during pregnancy as assessed by postural perturbations. Gait Posture. 2014;39(1):218–23. https://doi.org/10.1016/j.gaitpost.2013.07.011.

    PubMed  Google Scholar 

  151. McCrory JL, Chambers AJ, Daftary A, Redfern MS. Ground reaction forces during stair locomotion in pregnant fallers and non-fallers. Clin Biomech. 2014;29(2):143–8. https://doi.org/10.1016/j.clinbiomech.2013.11.020.

    Google Scholar 

  152. Takeda K, Yoshikata H, Imura M. Changes in posture control of women that fall during pregnancy. Int J Womens Health Reprod Sci. 2018;6(3):255–62. https://doi.org/10.15296/ijwhr.2018.43.

    Google Scholar 

  153. Sawa R, Doi T, Asai T, Watanabe K, Taniguchi T, Ono R. Differences in trunk control between early and late pregnancy during gait. Gait Posture. 2015;42(4):455–9. https://doi.org/10.1016/j.gaitpost.2015.07.058.

    PubMed  Google Scholar 

  154. Wu WH, Meijer OG, Lamoth CJC, Uegaki K, van Dieen JH, Wuisman PIJM, et al. Gait coordination in pregnancy: transverse pelvic and thoracic rotations and their relative phase. Clin Biomech. 2004;19(5):480–8. https://doi.org/10.1016/j.clinbiomech.2004.02.003.

    Google Scholar 

  155. Alberton CL, Bgeginski R, Pinto SS, Nunes GN, Andrade LS, Brasil B, et al. Water-based exercises in pregnancy: apparent weight in immersion and ground reaction force at third trimester. Clin Biomech. 2019;67:148–52. https://doi.org/10.1016/j.clinbiomech.2019.05.021.

    Google Scholar 

  156. Kluge J, Hall D, Louw Q, Theron G, Grove D. Specific exercises to treat pregnancy-related low back pain in a South African population. Int J Gynaecol Obstet. 2011;113(3):187–91. https://doi.org/10.1016/j.ijgo.2010.10.030.

    PubMed  Google Scholar 

  157. Shim MJ, Lee YS, Oh HE, Kim JS. Effects of a back-pain-reducing program during pregnancy for Korean women: a non-equivalent control-group pretest-posttest study. Int J Nurs Stud. 2007;44(1):19–28. https://doi.org/10.1016/j.ijnurstu.2005.11.016.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Branco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Branco, M., Santos-Rocha, R., Aguiar, L., Vieira, F., Veloso, A.P. (2022). Biomechanical Adaptations of Gait in Pregnancy: Implications for Physical Activity and Exercise. In: Santos-Rocha, R. (eds) Exercise and Physical Activity During Pregnancy and Postpartum. Springer, Cham. https://doi.org/10.1007/978-3-031-06137-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06137-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06136-3

  • Online ISBN: 978-3-031-06137-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics