Skip to main content

Protection of Condensing Heat Exchange Surfaces of Boilers from Sulfuric Acid Corrosion

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing V (DSMIE 2022)

Abstract

The method of metal protection of boiler condensing heat exchange surfaces can be successfully used in stationary and ship boilers, which burn fuel oils containing sulfur. The proposed method includes the operation of coating with a protective film against sulfur corrosion of the boiler heat exchange surface at a wall temperature below the dew point temperature of H2SO4 vapor. A passive layer of iron oxides is used as a protective film. It is obtained by passing physicochemical processes of passivation over the entire condensing surface from the beginning of sulfuric acid vapor condensation by pretreatment of exhaust gas flow with ionizing electron beams with a capacity of about 1 Mrad, ozone water-fuel emulsion combustion with a water content of about 30%. The metal surface is under the protection of a very thin passive film, which has a reliable connection with the metal at the level of the crystal structure and eliminates direct contact of the metal with the aggressive environment. The protective film constantly occurs naturally under the condition of creating an equimolar ratio of nitrogen oxides NO2:NO (50:50)% in front of the condensing surface in the gas flow. The protection provides a significant increase in the boiler's efficiency (by 4 to 6%) when sulfur fuels combustion in their furnaces and deeper exhaust gases heat utilization in internal combustion engines and gas turbines (to 70%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hochenauer, C., Brandstetter, G.: CFD simulation of a low NOx oil fired boiler. In: Proceedings of the ASME Turbo Expo 2, GT2005–68060, pp. 1–10 (2005)

    Google Scholar 

  2. Gutiérrez Ortiz, F.J.: Modeling of fire-tube boilers. Appl. Therm. Eng. 31(16), 3463–3478 (2011)

    Article  Google Scholar 

  3. Konur, O., Saatcioglu, O.Y., Korkmaz, S.A., Erdogan, A., Colpan, C.O.: Heat exchanger network design of an organic Rankine cycle integrated waste heat recovery system of a marine vessel using pinch point analysis. Int. J. Energy Res. 44(15), 12312–12328 (2020)

    Article  Google Scholar 

  4. Kornienko, V., Radchenko, R., Bohdal, Ł, Kukiełka, L., Legutko, S.: Investigation of condensing heating surfaces with reduced corrosion of boilers with water-fuel emulsion combustion. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2020. LNNS, vol. 188, pp. 300–309. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66717-7_25

    Chapter  Google Scholar 

  5. Gruber, T., Schulze, K., Scharler, R., Obernberger, I.: Investigation of the corrosion behavior of 13CrMo4-5 for biomass fired boilers with coupled online corrosion and deposit probe measurements. Fuel 144, 15–24 (2015)

    Article  Google Scholar 

  6. Trushliakov, E., Radchenko, M., Radchenko, A., Kantor, S., Zongming, Y.: Statistical approach to improve the efficiency of air conditioning system performance in changeable climatic conditions. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, pp. 256–260 (2019)

    Google Scholar 

  7. Bohdal, Ł, Kukielka, L., Radchenko, A.M., Patyk, R., Kułakowski, M., Chodór, J.: Modelling of guillotining process of grain oriented silicon steel using FEM. AIP Conf. Proc. 2078, 020080 (2019)

    Google Scholar 

  8. Wang, Z., Feng, Z., Zhang, L., Lu, M.-X.: Current application and development trend in electrochemical measurement methods for the corrosion study of stainless steels. Gongcheng Kexue Xuebao/Chin. J. Eng. 42(5), 549–556 (2020)

    Google Scholar 

  9. Radchenko, A., Stachel, A., Forduy, S., Portnoi, B., Rizun, O.: Analysis of the efficiency of engine inlet air chilling unit with cooling towers. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) DSMIE 2020. LNME, pp. 322–331. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_31

    Chapter  Google Scholar 

  10. Radchenko, A., Trushliakov, E., Kosowski, K., Mikielewicz, D., Radchenko, M.: Innovative turbine intake air cooling systems and their rational designing. Energies 13(23), 6201 (2020). https://doi.org/10.3390/en13236201

    Article  Google Scholar 

  11. Radchenko, A., Mikielewicz, D., Forduy, S., Radchenko, M., Zubarev, A.: Monitoring the fuel efficiency of gas engine in integrated energy system. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) Integrated Computer Technologies in Mechanical Engineering. AISC, vol. 1113, pp. 361–370. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37618-5_31

    Chapter  Google Scholar 

  12. Radchenko, M., Mikielewicz, D., Andreev, A., Vanyeyev, S., Savenkov, O.: Efficient ship engine cyclic air cooling by turboexpander chiller for tropical climatic conditions. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) Integrated Computer Technologies in Mechanical Engineering - 2020. ICTM 2020. LNNS, vol. 188, pp. 498–507. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66717-7_42

  13. Radchenko, M., Radchenko, A., Radchenko, R., Kantor, S., Konovalov, D., Kornienko, V.: Rational loads of turbine inlet air absorption-ejector cooling systems. In: Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy (2021). https://doi.org/10.1177/09576509211045455

  14. Radchenko, M., Mikielewicz, D., Tkachenko, V., Klugmann, M., Andreev, A.: Enhancement of the operation efficiency of the transport air conditioning system. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds.) DSMIE 2020. LNME, pp. 332–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50491-5_32

    Chapter  Google Scholar 

  15. Huang, S., Li, C., Tan, T., Fu, P., Xu, G., Yang, Y.: An improved system for utilizing low-temperature waste heat of flue gas from coal-fired power plants. Entropy 19(423) (2017)

    Google Scholar 

  16. Radchenko, A., Trushliakov, E., Tkachenko, V., Portnoi, B., Prjadko, O.: Improvement of the refrigeration capacity utilizing for the ambient air conditioning system. In: Tonkonogyi, V., et al. (eds.) Advanced Manufacturing Processes II. InterPartner 2020. LNME, pp. 714–723. Springer, Cham (2021)

    Google Scholar 

  17. Chen, H., Pan, P., Wang, Y., Zhao, Q.: Field study on the corrosion and ash deposition of low–temperature heating surface in a large–scale coal–fired power plant. Fuel 208, 149–159 (2017)

    Article  Google Scholar 

  18. Tenditnyi, Y.: Impact of the combustion modes of liquid sulfur fuel on the rate of low-temperature corrosion. Collection of Scientific Publications NUOS (2017)

    Google Scholar 

  19. Kotler, V.P., Enyakin, Yu.P.: Implementation and efficiency of technological methods to suppress nitrogen oxides at thermal electric power plants. Teploenergetika 6, 2–9 (1994)

    Google Scholar 

  20. Cui, X., Ning, Z.: Sulfur corrosion and prevention in petroleum processing. Pet. Refin. Eng. 29(8), 61–67 (1999)

    Google Scholar 

  21. Radchenko, A., Radchenko, M., Trushliakov, E., Kantor, S., Tkachenko, V.: Statistical method to define rational heat loads on railway air conditioning system for changeable climatic conditions. In: 5th International Conference on Systems and Informatics, ICSAI 2018, Jiangsu, Nanjing, China, pp. 1294–1298 (2019)

    Google Scholar 

  22. Wang, Z., Feng, Z., Fan, X.-H., Zhang, L.: Pseudo-passivation mechanism of CoCrFeNiMo0.01 high-entropy alloy in H2S-containing acid solutions. Corros.Sci. 179, 109146 (2021)

    Google Scholar 

  23. Bohdal, L., Kukiełka, L., Legutko, S., Patyk, R., Radchenko, A.M.: Modeling and experimental analysis of shear-slitting of AA6111-T4 aluminum alloy sheet. Materials 13(14), 3175 (2020)

    Article  Google Scholar 

  24. Sosin, D.V., Shtegman, A.V., Kotler, V.R., Tokarev, R.S., Shkrobtak, A.S.: Low cost methods of reducing nox emissions from coal-fired boilers. Power Technol. Eng. 45(5), 361–364 (2012)

    Google Scholar 

  25. Deng, J., Wang, X., Wei, Z., Wang, L., Wang, C., Chen, Z.: A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels. Sci. Total Environ. 766, 144319 (2021)

    Article  Google Scholar 

  26. Valluri, S., Kawatra, S.K.: Simultaneous removal of CO2, NOx and SOx using single stage absorption column. J. Environ. Sci. (China) 103, 279–287 (2021)

    Article  Google Scholar 

  27. Esarte, C., Delgado, J.: Influence of heating oil formulation on the combustion and emissions of domestic condensing boilers using fossil fuel and renewable fuel mixtures. Energy Fuels 32(10), 10106–10113 (2018)

    Article  Google Scholar 

  28. Olenius, T., Heitto, A., Roldin, P., Yli-Juuti, T., Duwig, C.: Modeling of exhaust gas cleaning by acid pollutant conversion to aerosol particles. Fuel 290, 120044 (2021)

    Article  Google Scholar 

  29. Konovalov, D., Kobalava, H., Radchenko, M., Sviridov, V., Scurtu, I.C.: Optimal sizing of the evaporation chamber in the low-flow aerothermopressor for a combustion engine. In: Tonkonogyi, V. et al. (eds.) Advanced Manufacturing Processes II. InterPartner 2020. LNME, pp. 654–663. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68014-5_63

  30. Radchenko, R., Pyrysunko, M., Kornienko, V., Scurtu, I.C., Patyk, R.: Improving the ecological and energy efficiency of internal combustion engines by ejector chiller using recirculation gas heat. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2020. LNNS, vol. 188, pp. 531–541. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66717-7_45

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Kornienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kornienko, V., Radchenko, R., Konovalov, D., Gorbov, V., Kalinichenko, I. (2022). Protection of Condensing Heat Exchange Surfaces of Boilers from Sulfuric Acid Corrosion. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing V. DSMIE 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-06044-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06044-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06043-4

  • Online ISBN: 978-3-031-06044-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics