Skip to main content

Martingales in the Study of Randomness

  • Chapter
  • First Online:
The Splendors and Miseries of Martingales

Part of the book series: Trends in the History of Science ((TRENDSHISTORYSCIENCE))

  • 930 Accesses

Abstract

Martingales played an important role in the study of randomness in the twentieth century. In the 1930s, Jean Ville used martingales to improve Richard von Mises’s and Abraham Wald’s concept of an infinite random sequence, or collective. After the development of algorithmic randomness by Andrei Kolmogorov, Ray Solomonoff, Gregory Chaitin, and Per Martin-Löf in the 1960s, Claus-Peter Schnorr developed Ville’s concept in this new context. Along with Schnorr, Leonid Levin was a key figure in the development in the 1970s. While Schnorr worked with algorithmic martingales and supermartingales, Levin worked with the closely related concept of a semimeasure. In order to characterize the randomness of an infinite sequence in terms of the complexity of its prefixes, they introduced new ways of measuring complexity: monotone complexity (Schnorr and Levin) and prefix complexity (Levin and Chaitin).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ein Kollektivgegenstand ist eine Vielheit von gleichartigen Dingen, die nach einem veränderlichen Merkmal statistisch geordnet werden kann. [8, p. 96], in italics in the original.

  2. 2.

    In the original: Beispiele solcher unendlich gedachter Folgen sind die Ziehungen aus einer Urne, die etwa beim gewöhnlichen Lotto zu einem 5-dimensionalen Merkmalraum führen (Koordinaten sind die 5 Nummern einer Ziehung), oder die Moleküle eines Gases mit dem 3-dimensionalen Merkmalraum ihrer Geschwindigkeiten...[54, p. 70]

  3. 3.

    See for example §2 of Marie-France Bru and Bernard Bru’s chapter, “Borel’s denumerable martingales, 1909–1949”, in the present volume.

  4. 4.

    The letters between von Mises and Hausdorff on the topic are reproduced in [31, pp. 825–829]. Hausdorff also had difficulties with von Mises first axiom, but he thought the second axiom raised the greatest logical difficulties (p. 826). Jean Ville recalled that Maurice Fréchet also had the most difficulty with the second axiom; see the chapter of the present volume devoted to Pierre Crépel’s interview and correspondence with Ville. Reinhard Siegmund-Schultze has reviewed Pólya and Hausdorff’s objections and von Mises’s extensive interaction with Pólya [81]. Von Mises received a very negative reception at Göttingen in 1931 [81, p. 493]. We shortly discuss his reception at Geneva in 1937. His 1940 debate with the United States mathematician Joseph Doob, at a meeting of the Institute of Mathematical Statistics at Dartmouth, New Hampshire, is also notable [59, 61].

  5. 5.

    Popper’s exposition was not as mathematically precise as that of the other two authors, and the assertion that his proposal was exactly identical with theirs may be a simplification.

  6. 6.

    In the original: Die Festsetzung daß in einem Kollektiv jede Stellenauswahl die Grenzhäufigkeit unverändert läßt, besagt nichts anders als dies: Wir verabreden, daß, wenn in einer konkreten Aufgabe ein Kollektiv einer bestimmten Stellenauswahl unterworfen wird, wir annehmen wollen, diese Stellenauswahl ändere nichts an den Grenzwerten der relativen Häufigkeiten. Nichts darüber hinaus enthält mein Regellosigkeitsaxiom.

  7. 7.

    In a footnote to the Comptes rendus note, Wald says that he will give proofs in the seventh volume of Menger’s Ergebnisse, the volume for 1934–35. In a letter to von Mises dated 27 April 1936 (Papers of Richard von Mises, HUG 4574.5 Box 3, Folder 1936, Harvard University Archives), Wald states that the article with the proofs will appear in July 1936. But the notice of Wald’s talk on 13 February 1935, in the seventh volume of the Ergebnisse, states correctly that it is in the eighth volume, which did not appear in print until 1937 [88].

  8. 8.

    This comment appears in an endnote on p. 274 of the second German edition of Wahrscheinlichkeit, Statistik und Wahrheit [56]: “In der gleichen Richtung noch wesentlich weiter gehende Resultate bei A. Wald,...”. Wald is not otherwise mentioned in the book.

  9. 9.

    There is a subtle shift in terminology here. Von Mises had called a subsequence selection rule a Stellenauswahl, or “place selection". Wald calls it instead an Auswahlvorschrift, or “selection procedure” (in the note in French he used procédé de choix). The word Vorschrift, which can also be translated as “instruction”, puts an emphasis on the computational aspect of the selection that was missing from von Mises’s terminology.

  10. 10.

    For a history of Cournot’s principle and examples of statements embracing it by Jacques Hadamard, Paul Lévy, Maurice Fréchet, and Émile Borel, see [74]. The principle was named after Cournot by Fréchet around 1950.

  11. 11.

    For centuries the word martingale has referred to the strategy for betting that doubles one’s bet after every loss, and it was also used for more complicated strategies. See Roger Mansuy’s chapter on the word martingale and Glenn Shafer’s chapter “Martingales at the casino” in the present volume.

  12. 12.

    An asymptotic property of \(\omega _1\omega _2\ldots \) is one that does not depend on any finite prefix. In 1933 [32], Kolmogorov had shown that the probability of an asymptotic property is either zero or one.

  13. 13.

    In the case of the singular rules, the sequence must be outside the set of probability zero on which the rule produces an infinite subsequence; in the case of the nonsingular rules, it must be outside the set of probability zero on which the rule produces a subsequence that does not converge to 1/2.

  14. 14.

    Papers of Richard von Mises, HUG 4574.5 Box 3, Folder 1936, Harvard University Archives.

  15. 15.

    See [75, Lemma 1.6].

  16. 16.

    In the original: “nous nous soumettons en ce point”

  17. 17.

    Concerning early criticism of von Mises by Soviet philosophers, see Siegmund-Schultze [80].

  18. 18.

    In French: “La thèse de Monsieur Jean VILLE, intitulée Étude critique de la notion de Collectif, est une étude sur les fondements du calcul des probabilités, qui a eu les plus vifs éloges de Monsieur FRECHET et de Monsieur BOREL. Il est de fait que les assises de la théorie de la mesure étaient loin d’être clarifiées à l’époque où Jean VILLE a fait sa thèse, et que cette dernière a fortement contribué à sa mise au point.” (Archives Nationales, Fontainebleau, Cote 19840325, art. 542.)

  19. 19.

    This is corroborated by a letter Kolmogorov wrote to Fréchet in 1939; see the chapter “Andrei Kolmogorov and Leonid Levin on Randomness” in the present volume.

  20. 20.

    Many authors now use C(x) instead of K(x).

  21. 21.

    Zvonkin is listed as the first author of the article; note that Z comes before L in the Cyrillic alphabet.

  22. 22.

    Later Levin introduced the universal semimeasure on natural numbers; now it is sometimes called discrete a priori probability, while the universal semimeasure on a binary tree introduced in [94] is called continuous a priori probability.

  23. 23.

    Kolmogorov’s 1968 paper did not mention Levin explicitly, but the Zvonkin and Levin’s 1970 paper, carefully edited by Kolmogorov, mentioned that Levin and Kolmogorov independently came to the result, and there is no doubt that Kolmogorov agreed with this remark.

  24. 24.

    If understood literally, this definition does not have the properties mentioned by Levin in his letter; one should allow the output of A to appear bit by bit. The correct definition appeared in Levin’s paper [37].

References

  1. Asarin, E.A.: Some properties of Kolmogorov \(\delta \)-random finite sequences. Theory of Probability and its Applications 32, 507–508 (1987)

    Article  MATH  Google Scholar 

  2. Asarin, E.A.: On some properties of finite objects random in the algorithmic sense. Soviet Mathematics Doklady 36, 109–112 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Barbut, M., Locker, B., Mazliak, L.: Paul Lévy and Maurice Fréchet: 50 years of correspondence in 107 letters. Springer (2014)

    Google Scholar 

  4. Becchio, G.: Unexplored Dimensions: Karl Menger on Economics and Philosophy (1923-1938). Emerald (2009)

    Google Scholar 

  5. Bienvenu, L., Shen, A.: Algorithmic information theory and martingales (2009). Arxiv:0906.2614

  6. Borel, E.: Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico de Palermo 27, 247–270 (1909)

    Article  MATH  Google Scholar 

  7. Borel, E.: Probabilité et certitude. Presses Universitaires de France, Paris (1950)

    MATH  Google Scholar 

  8. Bruns, H.: Wahrscheinlichkeitsrechnung und Kollektivmasslehre. Teubner (1906)

    Google Scholar 

  9. Calude, C.S.: Information and Randomness. An Algorithmic Perspective. Springer (1994). Second edition 2002

    Google Scholar 

  10. Cavaillès, J.: Du collectif au pari. Revue de métaphysique et de morale 47, 139–163 (1940)

    MATH  Google Scholar 

  11. Chaitin, G.J.: On the length of programs for computing finite binary sequences. Journal of the ACM 13, 547–569 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaitin, G.J.: On the length of programs for computing finite binary sequences: statistical considerations. Journal of the ACM 16, 145–159 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chaitin, G.J.: Computational complexity and Gödel’s incompleteness theorem. ACM SIGACT News 9, 11–12 (1971)

    Article  Google Scholar 

  14. Chaitin, G.J.: A theory of program size formally identical to information theory. Journal of the ACM 22, 329–340 (1975). Received April 1974; revised December 1974

    Google Scholar 

  15. Chaitin, G.J.: Algorithmic information theory. Some recollections. In: C.S. Calude (ed.) Randomness and Complexity. From Leibniz to Chaitin, pp. 423–441. World Scientific (2007). ArXiv:math/0701164 [math.HO]

  16. Church, A.: On the concept of a random sequence. Bull. Amer. Math. Soc. 46(2), 130–135 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coolidge, J.L.: An Introduction to Mathematical Probability. Oxford University Press, London (1925)

    MATH  Google Scholar 

  18. Copeland Sr., A.H.: Admissible numbers in the theory of probability. American Journal of Mathematics 50, 535–552 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  19. Davis, M. (ed.): The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions. Raven Press, New York (1965)

    Google Scholar 

  20. Dierker, E., Sigmund, K. (eds.): Karl Menger: Ergebnisse eines Mathematischen Kolloquiums. Springer (1998)

    Google Scholar 

  21. Doob, J.L.: Note on probability. Annals of Mathematics 37(2), 363–367 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  22. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Springer (2010)

    Google Scholar 

  23. Du Pasquier, L.G.: Le calcul des probabilités, son évolution mathématique et philosophique. Hermann, Paris (1926)

    MATH  Google Scholar 

  24. Feller, W.: Über die Existenz von sogenannten Kollektiven. Fundamenta Mathematicae 32(1), 87–96 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  25. de Finetti, B.: Compte rendu critique du colloque de Genève sur la théorie des probabilités. Hermann, Paris (1939). This is the eighth installment (number 766) of [?].

    Google Scholar 

  26. Fisher, R.A.: Statistical Methods and Scientific Inference. Oliver and Boyd, Edinburgh (1956)

    MATH  Google Scholar 

  27. Fréchet, M.: Exposé et discussion de quelques recherches récentes sur les fondements du calcul des probabilités. pp. 23–55. in Fréchet, M. et Wavre, R., éditeurs. Colloque consacré à la théorie des probabilités. Hermann (1938).

    Google Scholar 

  28. Gács, P.: On the symmetry of algorithmic information. Soviet Math. Doklady 15(5), 1477–1480 (1974)

    MATH  Google Scholar 

  29. Gács, P.: Review of Algorithmic Information Theory, by Gregory J. Chaitin. The Journal of Symbolic Logic 54(2), 624–637 (1989)

    Google Scholar 

  30. Goldreich, O.: An Introduction to Cryptography, Vol. 1. Cambridge (2001)

    Google Scholar 

  31. Hausdorff, F.: Gesammelte Werke. Band V: Astronomie, Optik und Wahrscheinlichkeitstheorie. Springer (2006)

    Google Scholar 

  32. Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin (1933). An English translation by Nathan Morrison appeared under the title Foundations of the Theory of Probability (Chelsea, New York) in 1950, with a second edition in 1956.

    Google Scholar 

  33. Kolmogorov, A.N.: On tables of random numbers. Sankhyā: The Indian Journal of Statistics, Series A 25(4), 369–376 (1963)

    Google Scholar 

  34. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1, 1–7 (1965)

    Google Scholar 

  35. Kolmogorov, A.N.: Logical basis for information theory and probability theory. IEEE Trans. Inform. Theory 14, 662–664 (1968). “Manuscript received December 13, 1967. The work is based on an invited lecture given at the International Symposium on Information Theory, San Remo, Italy, September, 1967. Translation courtesy of AFOSR, USAF. Edited by A.V.Balakrishnan.”

    Google Scholar 

  36. van Lambalgen, M.: Von Mises’ definition of random sequences reconsidered. The Journal of Symbolic Logic 52(3), 725–755 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Levin, L.A.: On the notion of a random sequence. Soviet Math. Doklady 14(5), 1413–1416 (1973)

    MATH  Google Scholar 

  38. Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)

    Google Scholar 

  39. Levin, L.A.: Laws of information conservation (nongrowth) and aspects of the foundation of probability theory. Problems of Information Transmission 10, 206–210 (1974)

    Google Scholar 

  40. Levin, L.A.: Various measures of complexity for finite objects (axiomatic description). Soviet Math. Doklady 17(2), 522–526 (1976)

    MATH  Google Scholar 

  41. Levin, L.A.: Interview with Alexander Shen (2008)

    Google Scholar 

  42. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 4th edn. Springer (2019)

    Google Scholar 

  43. Lieb, E.H., Osherson, D., Weinstein, S.: Elementary proof of a theorem of Jean Ville (2006). Arxiv:cs/0607054

  44. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32, 1236–1259 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Markov Jr., A.A.: Normal algorithms connected with the computation of Boolean functions. Mathematics of the USSR. Izvestija 1, 151–194 (1967)

    Article  MATH  Google Scholar 

  46. Martin-Löf, P.: Algorithmen und zufällige Folgen. Vier Vorträge von Per Martin-Löf (Stockholm) gehalten am Mathematischen Institut der Universität Erlangen-Nürnberg (1966). This document, dated 16 April 1966, consists of notes taken by K. Jacobs and W. Müller from lectures by Martin-Löf at Erlangen on 5, 6, 14, and 15 April.

    Google Scholar 

  47. Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  48. Martin-Löf, P.: On the concept of a random sequence. Theory of Probability and Its Applications 11(1), 177–179 (1966)

    Google Scholar 

  49. Martin-Löf, P.: The literature on von Mises’ Kollektivs revisited. Theoria 35(1), 12–37 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  50. Martin-Löf, P.: Complexity oscillations in infinite binary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 19, 225–230 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  51. Martin-Löf, P.: (2008). Private communication to Alexander Shen.

    Google Scholar 

  52. Menger, K.: The formative years of Abraham Wald and his work in geometry. Annals of Mathematical Statistics 23, 14–20 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  53. Menger, K.: Reminiscences of the Vienna Circle and the Mathematical Colloquium. Springer (1994)

    Google Scholar 

  54. von Mises, R.: Fundamentalsätze der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 4, 1–97 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  55. von Mises, R.: Grundlagen der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 5, 52–99 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  56. von Mises, R.: Wahrscheinlichkeit, Statistik und Wahrheit. Springer, Vienna (1928). 2nd edition 1936

    Google Scholar 

  57. von Mises, R.: Wahrscheinlichkeitsrechnung und ihre Anwendungen in der Statistik und der theoretischen Physik. F. Deuticke, Leipzig and Vienna (1931)

    MATH  Google Scholar 

  58. von Mises, R.: Quelques remarques sur les fondements du calcul des probabilités. pp. 57–66. in Fréchet, M. et Wavre, R., éditeurs. Colloque consacré à la théorie des probabilités. Hermann (1938).

    Google Scholar 

  59. von Mises, R.: On the foundations of probability and statistics. Annals of Mathematical Statistics 12, 191–205 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  60. von Mises, R.: Mathematical Theory of Probability and Statistics. Academic Press, New York and London (1964). Edited and complemented by Hilda Geiringer.

    Google Scholar 

  61. von Mises, R., Doob, J.L.: Discussion of papers on probability theory. Annals of Mathematical Statistics 12, 215–217 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  62. Morgenstern, O.: Abraham Wald, 1902–1950. Econometrica 19(4), 361–367 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  63. Nies, A.: Computability and Randomness. Oxford (2009)

    Google Scholar 

  64. Parthasarathy, K.R.: Obituary of Andrei Kolmogorov. Journal of Applied Probability 25(1), 445–450 (1988)

    MathSciNet  Google Scholar 

  65. von Plato, J.: Creating Modern Probability. Cambridge (1994)

    Google Scholar 

  66. Popper, K.R.: Logik der Forschung: Zur Erkenntnistheorie der modernen Naturwissenschaft. Springer, Vienna (1935). English translation, The Logic of Scientific Discovery, with extensive new appendices, Hutchinson, London, in 1959.

    Google Scholar 

  67. Reichenbach, H.: Axiomatik der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 34, 568–619 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  68. Schnorr, C.P.: A talk during Dagstuhl seminar 06051, 29 January–3 February 2006. Http://www.hutter1.net/dagstuhl/schnorr.mp3

    Google Scholar 

  69. Schnorr, C.P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5(3), 246–258 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  70. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Springer (1971)

    Book  MATH  Google Scholar 

  71. Schnorr, C.P.: Process complexity and effective random tests. Journal of Computer and System Sciences 7, 376–388 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  72. Schnorr, C.P.: A survey of the theory of random sequences. In: R. Butts, J. Hintikka (eds.) Basic problems in methodology and linguistics, pp. 193–211. Reidel (1977)

    Google Scholar 

  73. Shafer, G., Vovk, V.: Probability and Finance: It’s Only a Game! Wiley, New York (2001)

    Book  MATH  Google Scholar 

  74. Shafer, G., Vovk, V.: The sources of Kolmogorov’s Grundbegriffe. Statistical Science 21(1), 70–98 (2006). A longer version is at www.probabilityandfinance.com as Working Paper 4.

    Google Scholar 

  75. Shafer, G., Vovk, V.: Game-Theoretic Foundations for Probability and Finance. Wiley, Hoboken, New Jersey (2019)

    Book  MATH  Google Scholar 

  76. Shasha, D., Lazere, V.: Out of their Minds: The Lives and Discoveries of 15 Great Computer Scientists. Springer (1998)

    Google Scholar 

  77. Shen, A.: Algorithmic information theory and foundations of probability (2009). Arxiv:0906.4411

  78. Shen, A.: Algorithmic information theory and Kolmogorov complexity. In: Measures of Complexity. Festschrift for Alexey Chervonenkis. Springer (2015)

    Google Scholar 

  79. Shen, A., Uspensky, V., Vereshchagin, N.: Kolmogorov complexity and algorithmic randomness. American Mathematical Society (2017)

    Google Scholar 

  80. Siegmund-Schultze, R.: Mathematicians forced to philosophize: An introduction to Khinchin’s paper on von Mises’ theory of probability. Science in Context 17(3), 373–390 (2004). A translation of Khinchin’s paper into English, by Oscar Sheynin, follows on pp. 391–422.

    Google Scholar 

  81. Siegmund-Schultze, R.: Probability in 1919/20: the von Mises-Pólya controversy. Archive for History of Exact Sciences 60(5), 431–515 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  82. Solomonoff, R.J.: A formal theory of inductive inference, Part I. Information and Control 7(1), 1–22 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  83. Solomonoff, R.J.: A formal theory of inductive inference, Part II. Information and Control 7(2), 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  84. Solomonoff, R.J.: Complexity-based induction systems: Comparisons and convergence theorems. IEEE Transactions on Information Theory IT-24(4), 422–432 (1978)

    Google Scholar 

  85. Ville, J.: Sur la notion de collectif. Comptes rendus 203, 26–27 (1936)

    MATH  Google Scholar 

  86. Ville, J.: Étude critique de la notion de collectif. Gauthier-Villars, Paris (1939)

    MATH  Google Scholar 

  87. Wald, A.: Sur la notion de collectif dans le calcul des probabilités. Comptes rendus 202, 180–183 (1936)

    MATH  Google Scholar 

  88. Wald, A.: Die Wiederspruchsfreiheit des Kollektivbegriffes der Wahrscheinlichkeitsrechnung. Ergebnisse eines Mathematischen Kolloquiums 8, 38–72 (1937)

    MATH  Google Scholar 

  89. Wald, A.: Die Widerspruchfreiheit des Kollectivbegriffes. In: Les fondements du calcul des probabilités, pp. 79–99. Hermann (1938). Second installment (number 735) of [?].

    Google Scholar 

  90. Wald, A.: Review of Probability, Statistics and Truth, by Richard von Mises. Journal of the American Statistical Association 34(207), 591–592 (1939)

    Article  Google Scholar 

  91. Wang, Y.: A separation of two randomness concepts. Information Processing Letters 69(3), 115–118 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  92. Weaver, W.: Recent contributions to the mathematical theory of communication. ETC: A Review of General Semantics 10(4), 261–281 (1953)

    Google Scholar 

  93. Wolfowitz, J.: Abraham Wald, 1902–1950. Annals of Mathematical Statistics 23(1), 1–13 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  94. Zvonkin, A.K., L. A. Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Math. Surveys 25(6), 83–124 (1970)

    Google Scholar 

Download references

Acknowledgements

In addition to published sources, we have drawn on interviews with Peter Gács, Leonid Levin, and Per Martin-Löf, and on discussions at a meeting at Dagstuhl in late January and early February 2006. Marcus Hutter recorded historical talks at Dagstuhl by Christian Calude, Claus-Peter Schnorr, and Paul Vitányi and posted them at http://www.hutter1.net/dagstuhl. We have also profited from discussions with Leonid Bassalygo, Reinhard Siegmund-Schultze, Vladimir Uspensky, Vladimir Vovk, Vladimir Vyugin, and others. We are grateful to Reinhard Siegmund-Schultze for calling to our attention the letters between von Mises and Wald in the Harvard Archives.

Preparation of an earlier version of this chapter, which appeared in the Electronic Journal for History of Probability and Statistics in June 2009, was supported in part by ANR grant NAFIT-08-EMER-008-01. An earlier preliminary version [5], by Laurent Bienvenu and Alexander Shen, contains additional information about the history of algorithmic information theory; see also [77].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Shafer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bienvenu, L., Shafer, G., Shen, A. (2022). Martingales in the Study of Randomness. In: Mazliak, L., Shafer, G. (eds) The Splendors and Miseries of Martingales. Trends in the History of Science. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-05988-9_11

Download citation

Publish with us

Policies and ethics