Skip to main content

The Concept of Li-Ion Battery Control Strategies to Improve Reliability in Electric Vehicle (EV) Applications

  • Chapter
  • First Online:
Electric Vehicle Integration via Smart Charging

Abstract

The nonlinear features of lithium-ion batteries make the lifetime performance, reliability assessment, and control of the battery more difficult. The battery management system (BMS) has been known as a key system for monitoring, controlling, and improving the lifespan and reliability of the Li-ion battery from the cell to pack levels in electric vehicles (EVs). To improve the abovementioned issue, the BMS should control and monitor the current, voltage, and temperature of the battery system during the lifespan of the battery. In this chapter, the BMS definition, SoH and SoC methods, and battery fault detection methods have been described as key aspects of the control strategy of Li-ion batteries for improving the reliability of the system. Moreover, the challenges and further work relating to the estimation of the state of function of the Li-ion batteries for EV applications have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ranieri, M., Alberto, D., Piret, H., & Cattin, V. (2017). Electronic module for the thermal monitoring of a Li-ion battery cell through the electrochemical impedance estimation. Microelectronics Reliability, 79, 410–415. https://doi.org/10.1016/J.MICROREL.2017.06.010

    Article  Google Scholar 

  2. Zhou, X., Stein, J. L., & Ersal, T. (2017). Battery state of health monitoring by estimation of the number of cyclable Li-ions. Control Engineering Practice, 66, 51–63. https://doi.org/10.1016/J.CONENGPRAC.2017.05.009

    Article  Google Scholar 

  3. Brunner, D., Prasad, A. K., Advani, S. G., & Peticolas, B. W. (2010). A robust cell voltage monitoring system for analysis and diagnosis of fuel cell or battery systems. Journal of Power Sources, 195(24), 8006–8012. https://doi.org/10.1016/J.JPOWSOUR.2010.06.054

    Article  Google Scholar 

  4. Wang, S.-L., et al. (2018). Open circuit voltage and state of charge relationship functional optimization for the working state monitoring of the aerial lithium-ion battery pack. Journal of Cleaner Production. https://doi.org/10.1016/J.JCLEPRO.2018.07.030

  5. Wang, Z., Liu, K., Liu, J., Luo, Q., & Ma, C. (2017). Influence of the charging and discharging of the 18650 lithium-ion battery thermal runaway. Journal of Loss Prevention in the Process Industries. https://doi.org/10.1016/J.JLP.2017.11.008

  6. Lu, Z., Yu, X., Zhang, L., Meng, X., Wei, L., & Jin, L. (2017). Experimental investigation on the charge-discharge performance of the commercial lithium-ion batteries. Energy Procedia, 143, 21–26. https://doi.org/10.1016/J.EGYPRO.2017.12.642

    Article  Google Scholar 

  7. Yu, Q., Xiong, R., Lin, C., Shen, W., & Deng, J. (2017). Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters. IEEE Transactions on Vehicular Technology, 66(10), 8693–8701. https://doi.org/10.1109/TVT.2017.2709326

    Article  Google Scholar 

  8. Xiong, R., Sun, F., Gong, X., & He, H. (2013). Adaptive state of charge estimator for lithium-ion cells series battery pack in electric vehicles. Journal of Power Sources, 242, 699–713. https://doi.org/10.1016/J.JPOWSOUR.2013.05.071

    Article  Google Scholar 

  9. Xiong, R., Sun, F., He, H., & Nguyen, T. D. (2013). A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles. Energy, 63, 295–308. https://doi.org/10.1016/J.ENERGY.2013.10.027

    Article  Google Scholar 

  10. Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M. (2013). A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 226, 272–288. https://doi.org/10.1016/j.jpowsour.2012.10.060

    Article  Google Scholar 

  11. Hoque, M. M., Hannan, M. A., Mohamed, A., & Ayob, A. (2017). Battery charge equalization controller in electric vehicle applications: A review. Renewable and Sustainable Energy Reviews, 75, 1363–1385. https://doi.org/10.1016/J.RSER.2016.11.126

    Article  Google Scholar 

  12. Hannan, M. A., Hoque, M. M., Ker, P. J., Begum, R. A., & Mohamed, A. (2017). Charge equalization controller algorithm for series-connected lithium-ion battery storage systems: Modeling and applications. Energies, 10(9), 1–20. https://doi.org/10.3390/en10091390

    Article  Google Scholar 

  13. Ju, F., Deng, W., & Li, J. (2016). Performance evaluation of modularized global equalization system for lithium-ion battery packs. IEEE Transactions on Automation Science and Engineering, 13(2), 986–996. https://doi.org/10.1109/TASE.2015.2434052

    Article  Google Scholar 

  14. Khan, M., Swierczynski, M., & Kær, S. (2017). Towards an ultimate battery thermal management system: A review. Batteries, 3(1), 9. https://doi.org/10.3390/batteries3010009

    Article  Google Scholar 

  15. Liu, K., Li, K., Peng, Q., & Zhang, C. (2018). A brief review on key technologies in the battery management system of electric vehicles. Frontiers of Mechanical Engineering. https://doi.org/10.1007/s11465-018-0516-8

  16. Wu, C., Zhu, C., & Ge, Y. (2017). A new fault diagnosis and prognosis technology for high-power lithium-ion battery. IEEE Transactions on Plasma Science, 45(7), 1533–1538. https://doi.org/10.1109/TPS.2017.2706088

    Article  Google Scholar 

  17. Lyu, D., Ren, B., & Li, S. (2019). Failure modes and mechanisms for rechargeable lithium-based batteries: A state-of-the-art review. Acta Mechanica, 230(3), 701–727. https://doi.org/10.1007/s00707-018-2327-8

    Article  Google Scholar 

  18. Hu, X., Zhang, K., Liu, K., Lin, X., Dey, S., & Onori, S. (2020). Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures. IEEE Industrial Electronics Magazine, 14(3), 65–91. https://doi.org/10.1109/MIE.2020.2964814

    Article  Google Scholar 

  19. Gandoman, F. H., et al. (2019). Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges. Applied Energy, 251, 113343. https://doi.org/10.1016/J.APENERGY.2019.113343

    Article  Google Scholar 

  20. Gandoman, F. H., Ahmed, E. M., Ali, Z. M., Berecibar, M., Zobaa, A. F., & Abdel Aleem, S. H. E. (2021). Reliability evaluation of lithium-ion batteries for E-mobility applications from practical and technical perspectives: A case study. Sustainability, 13(21), 11688. https://doi.org/10.3390/su132111688

    Article  Google Scholar 

  21. Gandoman, F. H., van Mierlo, J., Ahmadi, A., Abdel Aleem, S. H. E., & Chauhan, K. (2019). Safety and reliability evaluation for electric vehicles in modern power system networks. In Distributed energy resources in microgrids: Integration, challenges and optimization (pp. 389–404). https://doi.org/10.1016/B978-0-12-817774-7.00015-6

    Chapter  Google Scholar 

  22. Cheng, K. W. E., Divakar, B. P., Wu, H., Ding, K., & Ho, H. F. (2011). Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Transactions on Vehicular Technology, 60(1), 76–88. https://doi.org/10.1109/TVT.2010.2089647

    Article  Google Scholar 

  23. Xiong, R., Li, L., & Tian, J. (2018). Towards a smarter battery management system: A critical review on battery state of health monitoring methods. Journal of Power Sources, 405, 18–29. https://doi.org/10.1016/j.jpowsour.2018.10.019

    Article  Google Scholar 

  24. Li, Y., Chen, J., & Lan, F. (2020). Enhanced online model identification and state of charge estimation for lithium-ion battery under noise corrupted measurements by bias compensation recursive least squares. Journal of Power Sources, 456, 227984. https://doi.org/10.1016/j.jpowsour.2020.227984

    Article  Google Scholar 

  25. Li, X., Huang, Z., Tian, J., & Tian, Y. (2021). State-of-charge estimation tolerant of battery aging based on a physics-based model and an adaptive cubature Kalman filter. Energy, 220, 119767. https://doi.org/10.1016/j.energy.2021.119767

    Article  Google Scholar 

  26. Li, S., Li, Y., Zhao, D., & Zhang, C. (2020). Adaptive state of charge estimation for lithium-ion batteries based on implementable fractional-order technology. Journal of Energy Storage, 32, 101838. https://doi.org/10.1016/j.est.2020.101838

    Article  Google Scholar 

  27. Meng, H., & Li, Y.-F. (2019). A review on prognostics and health management (PHM) methods of lithium-ion batteries. Renewable and Sustainable Energy Reviews, 116, 109405. https://doi.org/10.1016/j.rser.2019.109405

    Article  Google Scholar 

  28. Zhu, Q., Xu, M., Liu, W., & Zheng, M. (2019). A state of charge estimation method for lithium-ion batteries based on fractional order adaptive extended Kalman filter. Energy, 187, 115880. https://doi.org/10.1016/j.energy.2019.115880

    Article  Google Scholar 

  29. Omariba, Z. B., Zhang, L., Kang, H., & Sun, D. (2020). Parameter identification and state estimation of lithium-ion batteries for electric vehicles with vibration and temperature dynamics. World Electric Vehicle Journal, 11(3). https://doi.org/10.3390/WEVJ11030050

  30. Shen, P., Ouyang, M., Lu, L., Li, J., & Feng, X. (2018). The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles. IEEE Transactions on Vehicular Technology, 67(1), 92–103. https://doi.org/10.1109/TVT.2017.2751613

    Article  Google Scholar 

  31. Chaoui, H., & Mandalapu, S. (2017). Comparative study of online open circuit voltage estimation techniques for state of charge estimation of lithium-ion batteries. Batteries, 3(2). https://doi.org/10.3390/batteries3020012

  32. Zou, Y., Li, S. E., Shao, B., & Wang, B. (2016). State-space model with non-integer order derivatives for lithium-ion battery. Applied Energy, 161, 330–336. https://doi.org/10.1016/j.apenergy.2015.10.025

    Article  Google Scholar 

  33. Tong, S., Lacap, J. H., & Park, J. W. (2016). Battery state of charge estimation using a load-classifying neural network. Journal of Energy Storage, 7, 236–243. https://doi.org/10.1016/j.est.2016.07.002

    Article  Google Scholar 

Download references

Acknowledgments

This publication is supported by award NPRP12S-0125-190013 from the QNRF (Qatar National Research Fund), a member of the Qatar Foundation. The information and views set out in this publication are those of the authors and do not necessarily reflect the official opinion of the QNRF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gandoman, F.H., Nasiriyan, V., Mohammadi-Ivatloo, B., Ahmadian, D. (2022). The Concept of Li-Ion Battery Control Strategies to Improve Reliability in Electric Vehicle (EV) Applications. In: Vahidinasab, V., Mohammadi-Ivatloo, B. (eds) Electric Vehicle Integration via Smart Charging. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-05909-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05909-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05908-7

  • Online ISBN: 978-3-031-05909-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics