Skip to main content

Laboratory Tests on Wind-Wave Generation, Interaction and Breaking Processes

  • Chapter
  • First Online:
Advances on Testing and Experimentation in Civil Engineering

Abstract

At the atmosphere-ocean interface, the interaction between the atmospheric and ocean boundary layers determines heat and momentum exchanges and can affect the global balance of substances in air and water. In addition, wave generation, transformation and breaking play key roles in many physical processes, as they are essential for the analysis and characterisation of the behaviours of artificial and natural marine infrastructures near coasts. Breaking waves are complex phenomena that are enhanced by the vorticity and generation of turbulence and their evolution, during breaking and near the seabed. The transformation of a wave train that is breaking on a slope depends on the transport of turbulent kinetic energy (TKE), which causes the advection and spread of turbulence and generates a vortex according to the type of breaking. These processes are complex and not fully elucidated. The laboratory provides powerful tools for investigating these processes more deeply by analysing the transfer between the atmospheric and oceanic boundary layers and the turbulent characteristics of the breaking waves. This chapter presents recent advances in laboratory testing that are based primarily on physical tests that were developed in a combined wave-wind flume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, J.: Laboratory studies of wind–wave interactions. J. Fluid Mech. 34(1), 91–111 (1968)

    Article  Google Scholar 

  2. Chiapponi, L., Longo, S., Bramato, S., Mans, C., Losada, A.M.: Free-surface turbulence, wind generated waves: laboratory data. Technical report on Experimental Activity in Granada, University of Parma (Italy), CEAMA (Granada, Spain) (2011)

    Google Scholar 

  3. Zavadsky, A., Liberzon, D., Shemer, L.: Statistical analysis of the spatial evolution of the stationary wind wave field. J. Phys. Oceanogr. 43(1), 65–79 (2013)

    Article  Google Scholar 

  4. Guo, A., Liu, J., Chen, W., Bai, X., Liu, G., Liu, T., Chen, S., Li, H.: Experimental study on the dynamic responses of a freestanding bridge tower subjected to coupled actions of wind and wave loads. J. Wind Eng. Ind. Aerodyn. 159, 36–47 (2016)

    Article  Google Scholar 

  5. van Vliet, P., Hering, F., Jähne, B.: Delft hydraulic’s large wind-wave flume. In: Air-Water Gas Transfer, pp. 505–516. Aeon Verlag, Hanau, Germany (1995)

    Google Scholar 

  6. Veron, F., Melville, W.K.: Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech. 446, 25 (2001)

    Article  MATH  Google Scholar 

  7. Olfateh, M., Ware, P., Callaghan, D.P., Nielsen, P., Baldock, T.E.: Momentum transfer under laboratory wind waves. Coast. Eng. 121, 255–264 (2017)

    Article  Google Scholar 

  8. ASI Lab Homepage. http://www1.udel.edu/ASI-Lab/facilities/index.html

  9. Addona, F., Chiapponi, L., Clavero, M., Losada, M.A., Longo, S.: On the interaction between partially-reflected waves and an opposing wind. Coast. Eng. 162, 103774 (2020)

    Article  Google Scholar 

  10. Andersen, T.L., Clavero, M., Frigaard, P., Losada, M., Puyol, J.I.: A new active absorption system and its performance to linear and non-linear waves. Coast. Eng. 114, 47–60 (2016)

    Article  Google Scholar 

  11. Rhee, T.S., Nightingale, P.D., Woolf, D.K., Caulliez, G., Bowyer, P., Andreae, M.O.: Influence of energetic wind and waves on gas transfer in a large wind-wave tunnel facility. J. Geophys. Res. Oceans 112(C5) (2007)

    Google Scholar 

  12. Pope, N.D., Widdows, J., Brinsley, M.D.: Estimation of bed shear stress using the turbulent kinetic energy approach—a comparison of annular flume and field data. Cont. Shelf Res. 26(8), 959–970 (2006)

    Article  Google Scholar 

  13. Schmundt, D., Münsterer, T., Lauer, H., Jähne, B.: The circular wind/wave facilities at the University of Heidelberg. In: Air-Water Gas Transfer, pp. 505–516. Aeon Verlag, Hanau, Germany (1995)

    Google Scholar 

  14. Krall, K.E.: Laboratory investigations of air-sea gas transfer under a wide range of water surface conditions. Dissertation, University of Heidelberg. Available at: http://www.ub.uni-heidelberg.de/archiv/14392 (2013)

  15. Toffoli, A., Proment, D., Salman, H., Monbaliu, J., Frascoli, F., Dafilis, M., Stramignoni, E., Forza, R., Manfrin, M., Onorato, M.: Wind generated rogue waves in an annular wave flume. Phys. Rev. Lett. 118(14), 144503 (2017)

    Article  Google Scholar 

  16. Takagaki, N., Komori, S., Suzuki, N., Iwano, K., Kurose, R.: Mechanism of drag coefficient saturation at strong wind speeds. Geophys. Res. Lett. 43(18), 9829–9835 (2016)

    Article  Google Scholar 

  17. Clavero, M., Longo, S., Chiapponi, L., Losada, M.A.: 3D flow measurements in regular breaking waves past a fixed submerged bar on an impermeable plane slope. J. Fluid Mech. 802, 490–527 (2016)

    Article  Google Scholar 

  18. Jähne, B., Riemer, K.S.: Two-dimensional wave number spectra of small-scale water surface waves. J. Geophys. Res. 95(C7), 11531–11546 (1990)

    Article  Google Scholar 

  19. Longo, S., Ungarish, M., Di Federico, V., Chiapponi, L., Petrolo, D.: Gravity currents produced by lock-release: theory and experiments concerning the effect of a free top in non-Boussinesq systems. Adv. Water Resour. 121, 456–471 (2018)

    Google Scholar 

  20. Bailey, S.C.C., Hultmark, M., Monty, J.P., Alfredsson, P.H., Chong, M.S., Duncan, R.D., Fransson, J.H.M., Hutchins, N., Marusic, I., McKeon, B.J., Nagib, H.M., Örlü, R., Segalini, A., Smits, A.J., Vinuesa, R.: Obtaining accurate mean velocity measurements in high Reynolds number turbulent boundary layers using Pitot tubes. J. Fluid Mech. 715, 642–670 (2013)

    Article  MATH  Google Scholar 

  21. Bruun, H.H.: Hot-wire anemometry: principles and signal analysis. Meas. Sci. Technol. 7, 024 (1996)

    Article  Google Scholar 

  22. Hutchins, N., Monty, J.P., Hultmark, M., Smits, A.J.: A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence. Exp. Fluids 56(1), 18 (2015)

    Article  Google Scholar 

  23. Longo, S., Losada, M.A.: Turbulent structure of air flow over wind-induced gravity waves. Exp. Fluids 53, 369–390 (2012)

    Article  Google Scholar 

  24. Makin, V., Branger, H., Peirson, W., Giovanangeli, J.P.: Modelling of laboratory measurements of stress in the air flow over wind-generated and paddle waves. J. Phys. Oceanogr. 37, 2824–2837 (2007)

    Article  Google Scholar 

  25. Longo, S.: The effects of air bubbles on ultrasound velocity measurements. Exp. Fluids 41(4), 593–602 (2006)

    Article  Google Scholar 

  26. Longo, S.: Experiments on turbulence beneath a free surface in a stationary field generated by a Crump weir: free surface characteristics and the relevant scales. Exp. Fluids 49, 1325–1338 (2010)

    Article  Google Scholar 

  27. Longo, S.: Experiments on turbulence beneath a free surface in a stationary field generated by a Crump weir: turbulence structure and correlation with the free surface. Exp. Fluids 50, 201–215 (2011)

    Article  Google Scholar 

  28. Longo, S.: Wind-generated water waves in a wind-tunnel: free surface statistics, wind friction and mean air flow properties. Coast. Eng. 61, 27–41 (2012)

    Article  Google Scholar 

  29. Chiapponi, L., Cobos, M., Losada, M.A., Longo, S.: Cross-shore variability and vorticity dynamics during wave breaking on a fixed bar. Coast. Eng. 127, 119–133 (2017)

    Article  Google Scholar 

  30. Longo, S., Clavero, M., Chiapponi, L., Losada, M.A.: Invariants of turbulence Reynolds stress and of dissipation tensors in regular breaking waves. Water 9(893), 1–12 (2017)

    Google Scholar 

  31. Willert, C.E.: High-speed particle image velocimetry for the efficient measurement of turbulence statistics. Exp. Fluids 56, 17 (2015)

    Article  Google Scholar 

  32. Petrolo, D., Longo, S.: Buoyancy transfer in a two-layer system in steady state. Experiments in a Taylor-Couette cell. J. Fluid Mech. 896(A27), 1–31 (2020)

    Google Scholar 

  33. Hughes, S.A.: Physical Models and Laboratory Techniques in Coastal Engineering, vol. 7. World Scientific (1993)

    Google Scholar 

  34. Chiapponi, L., Addona, F., Diaz-Carrasco, P., Losada, M.A., Longo, S.: Statistical analysis of the interaction between wind-waves and currents during early wave generation. Coast. Eng. 159, 103672 (2020)

    Article  Google Scholar 

  35. Peregrine, D.H.: Water-wave impact on walls. Annu. Rev. Fluid Mech. 35(1), 23–43 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bredmose, H., Bullock, G.N., Hogg, A.J.: Violent breaking wave impacts. Part 3. Effects of scale and aeration. J. Fluid Mech. 765, 82–113 (2015)

    Google Scholar 

  37. Teixeira, M.A.C., Belcher, S.E.: On the initiation of surface waves by turbulent shear flow. Dyn. Atmos. Oceans 41(1), 1–27 (2006)

    Article  Google Scholar 

  38. Toba, Y.: Similarity laws of the wind wave and the coupling process of the air and water turbulent boundary layers. Fluid Dyn. Res. 2(4), 263 (1988)

    Article  Google Scholar 

  39. Charnock, H.: Wind stress on a water surface. Q. J. R. Meteorol. Soc. 81(350), 639–640 (1955)

    Article  Google Scholar 

  40. Kraus, E.B., Businger, J.A.: Atmosphere-Ocean Interaction, vol. 27. Oxford University Press (1994)

    Google Scholar 

  41. Babanin, A.V.: On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys. Res. Lett. 33(20) (2006)

    Google Scholar 

  42. Longo, S., Liang, D., Chiapponi, L., Aguilera Jiménez, L.: Turbulent flow structure in experimental laboratory wind-generated gravity waves. Coast. Eng. 64, 1–15 (2012)

    Article  Google Scholar 

  43. Longo, S.: Principles and applications of dimensional analysis and similarity. Springer International Publishing, Cham (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. Janssen, P., Komen, G., De Voogt, W.: Friction velocity scaling in wind wave generation. Bound.-Layer Meteorol. 38(1–2), 29–35 (1987)

    Article  Google Scholar 

  45. Bendat, G.S., Piersol, A.G.: Random Data Analysis and Measurement Procedures. Wiley, New York (2000)

    MATH  Google Scholar 

  46. Longo, S., Chiapponi, L., Clavero, M.: Experimental analysis of the coherent structures and turbulence past a hydrofoil in stalling condition beneath a water-air interface. Eur. J. Mech./B Fluids 43, 172–182 (2014)

    Article  Google Scholar 

  47. Longo, S.: Turbulence under spilling breakers using discrete wavelets. Exp. Fluids 34(2), 181–191 (2003)

    Article  Google Scholar 

  48. Longo, S.: Vorticity and intermittency within the pre-breaking region of spilling breakers. Coast. Eng. 6, 285–296 (2009)

    Article  Google Scholar 

  49. Longo, S., Chiapponi, L., Clavero, M., Mäkelä, T., Liang, D.: Study of the turbulence in the air-side and water-side boundary layers in experimental laboratory wind induced surface waves. Coast. Eng. 69, 67–81 (2012)

    Article  Google Scholar 

  50. Longo, S., Domínguez, F.M., Valiani, A.: The turbulent structure of the flow field generated by a hydrofoil in stalling condition beneath a water-air interface. Exp. Therm. Fluid Sci. 61, 34–47 (2015)

    Article  Google Scholar 

  51. McKenna, S.P.: Free-surface turbulence and air–water gas exchange. PhD thesis, MIT, 2000

    Google Scholar 

  52. Kudryavtsev, V., Shrira, V., Dulov, V., Malinovsky, V.: On the vertical structure of wind-driven sea currents. J. Phys. Oceanogr. 38, 2121–2144 (2008)

    Article  Google Scholar 

  53. Peirson, W.L., Garcia, A.W., Pells, S.E.: Water wave attenuation due to opposing wind. J. Fluid Mech. 487, 345–365 (2003)

    Article  MATH  Google Scholar 

  54. Swan, C., James, R.L.: A simple analytical model for surface water waves on a depth-varying current. Appl. Ocean Res. 22(6), 331–347 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Clavero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clavero, M., Chiapponi, L., Longo, S., Losada, M.A. (2023). Laboratory Tests on Wind-Wave Generation, Interaction and Breaking Processes. In: Chastre, C., Neves, J., Ribeiro, D., Neves, M.G., Faria, P. (eds) Advances on Testing and Experimentation in Civil Engineering. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-031-05875-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05875-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05874-5

  • Online ISBN: 978-3-031-05875-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics