Skip to main content

Refining Enteric Neural Circuitry by Quantitative Morphology and Function in Mice

  • Conference paper
  • First Online:
The Enteric Nervous System II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1383))

  • 1108 Accesses

Abstract

RNA-Seq, electrophysiology and optogenetics in mouse models are used to assess function, identify disease related genes and model enteric neural circuits. Lacking a comprehensive quantitative description of the murine colonic enteric nervous system (ENS) makes it difficult to most effectively use mouse data to better understand ENS function or for development of therapeutic approaches for human motility disorders. Our goal was to provide a quantitative description of mouse colon to establish the extent to which mouse colon architecture, connectivity and function is a useful surrogate for human and other mammalian ENS. Using GCaMP imaging coupled with pharmacology and quantitative confocal and 3D image reconstruction, we present quantitative and functional data demonstrating that regional structural changes and variable distribution of neurons define neural circuit dynamics and functional connectivity responsible for colonic motor patterns and regional functional differences. Our results advance utility of multispecies and gut region-specific data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bornstein JC, Hendricks R, Furness JB, Trussell DC (1991) Ramification of theaxons of AH-neurons injected with the intracellular marker biocytin in the myenteric plexus of the guineapig small intestine. J Comp Neurol 314:437–451

    Article  CAS  Google Scholar 

  2. Brehmer A, Schrodl F, Neuhuber W (1999) Morphological classification of enteric neurons-100 years after Dogiel. Anat Embryol (Berl) 200:125–135

    Article  CAS  Google Scholar 

  3. Clerc N, Furness JB, Bornstein JC, Kunze WA (1998) Correlation of electrophysiological and morphological characteristics of myenteric neurons of the duodenum in the guinea-pig. Neuroscience 82:899–914

    Article  CAS  Google Scholar 

  4. Costa M, Brookes SJ, Steele PA, Gibbins I, Burcher E, Kandiah CJ (1996) Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 75(3):949–967

    Article  CAS  Google Scholar 

  5. Costa M, Furness JB, Pompolo S, Brookes SJH, Bornstein JC, Bredt DS, Snyder SH (1992) Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neurosci Lett 148(1–2):121–112

    Article  CAS  Google Scholar 

  6. Costa M, Keightley LJ, Hibberd TJ, Wiklendt L, Smolilo DJ, Dinning PG, Brookes SJ, Spencer NJ (2020) Characterization of alternating neurogenic motor patterns in mouse colon. Neurogastroenterol Motil 33:e14047

    Google Scholar 

  7. Costa M, Dodds KN, Wiklendt L, Spencer NJ, Brookes SJ, Dinning PG (2013) Neurogenic and myogenic motor activity in the colon of the guinea pig, mouse, rabbit, and rat. Am J Physiol Gastrointest Liver Physiol 305:G749–G759

    Article  CAS  Google Scholar 

  8. Costa M, Keightley LJ, Wiklendt L, Hibberd TJ, Arkwright JW, Omari T, Wattchow DA, Brookes SJH, Dinning PG, Spencer NJ (2019) Identification of multiple distinct neurogenic motor patterns that can occur simultaneously in the guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 316:G32–G44

    Article  CAS  Google Scholar 

  9. Dogiel A (1899) ber den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der S.ugetiere. Arch Anat Physiol Leipzig Anat Abt Jg 1899:130–158

    Google Scholar 

  10. Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin G K, Dionne D, Cuoco MS, Goder-Reiser MN, Sharova T, Aguirre AJ, Boland GM, Graham D, Rozenblatt-Rosen O, Xavier RJ, Regev A (2019) The enteric nervous system of the human and mouse colon at a single-cell resolution bioRxiv, 746743

    Google Scholar 

  11. Fung C, Vanden Berghe P (2020) Functional circuits and signal procesing in the enteric nervous system. Cell Mol Life Sci 77(22):4505–4522

    Google Scholar 

  12. Furness JB, Bornstein JC, Trussell DC (1988) Shapes of nerve cells in the myenteric plexus of the guinea-pig small intestine revealed by the intracellular injection of dye. Cell Tissue Res 254(3):561–571

    Article  CAS  Google Scholar 

  13. Furness JB, Kunze WA, Bertrand PP, Clerc N, Bornstein JC (1998) Intrinsic primary afferent neurons of the intestine. Prog Neurobiol 54(1):1–18

    Article  CAS  Google Scholar 

  14. Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96

    Article  CAS  Google Scholar 

  15. Furness JB (2008) The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol Motil 20 Suppl 1:32–38

    Article  CAS  Google Scholar 

  16. Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    Article  CAS  Google Scholar 

  17. Furness JB, Callaghan BP, Rivera LR, Cho HJ (2014) The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 817:39–71

    Article  Google Scholar 

  18. Furness JB, Robbins HL, Xiao J, Stebbing MJ, Nurgali K (2004) Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res 317:1–12

    Article  CAS  Google Scholar 

  19. Furness JB, Stebbing MJ (2018) The first brain: species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterol Motil 30

    Google Scholar 

  20. Gabella G, Trigg P (1984) Size of neurons and glial cells in the enteric ganglia of mice, guinea-pigs, rabbits and sheep. J Neurocytol 13:49–71

    Article  CAS  Google Scholar 

  21. Gonkowski S, Rytel L (2019) Somatostatin as an active substance in the mammalian enteric nervous system. Int J Mol Sci 20:4461

    Article  CAS  Google Scholar 

  22. Graham KD, Lopez SH, Sengupta R, Shenoy A, Schneider S, Wright CM, Feldman M, Furth E, Valdivieso F, Lemke A, Wilkins BJ, Naji A, Doolin EJ, Howard MJ, Heuckeroth RO (2020) Robust, 3-dimensional visualization of human colon enteric nervous system without tissue sectioning. Gastroenterology 158(2221–2235):e5

    Google Scholar 

  23. Kugler EM, Michel K, Zeller F, Demir IE, Ceyan GO, Schemann M et al (2015) Mechanical stress activates neurites and somata of myenteric neurons. Front Cell Neurosci 9:342

    Article  Google Scholar 

  24. Li Z, Hao MM, Van Den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P (2019) Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. elife 8:e42914

    Article  Google Scholar 

  25. Lomax AE, Furness JB (2000) Neurochemical classification of enteric neurons in the guinea-pig distal colon. Cell Tissue Res 302:59–72

    Article  CAS  Google Scholar 

  26. Makadia PA, Najjar SA, Saloman JL, Adelman P, Feng B, Margiotta JF, Albers KM, Davis BM (2018) Optogenetic activation of colon epithelium of the mouse produces high-frequency bursting in extrinsic colon afferents and engages visceromotor responses. J Neurosci 38:5788–5798

    Article  CAS  Google Scholar 

  27. Margiotta JF, Smith-Edwards KM, Nestor-Kalinoski AL, Davis BM, Albers KM, Howard MJ (2021) Synaptic components, function and modulation characterized by GCaMP6f Ca2+ imaging in mouse cholinergic myenteric ganglion neurons. Front Neurosci. In the press

    Google Scholar 

  28. May-Zhang AA, Tycksen E, Southard-Smith AN, Deal KK, Benthal JT, Buehler DP, Adam M, Simmons AJ, Monaghan JR, Matlock BK, Flaherty DK, Potter SS, Lau KS, Southard-Smith EM (2021) Combinatorial transcriptional profiling of mouse and human enteric neurons identifies shared and disparate subtypes in situ. Gastroenterology 160(3):755–770.e26

    Article  CAS  Google Scholar 

  29. Mazzuoli G, Schemann M (2009) Multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the myenteric plexus of the guinea pig ileum. J Physiol 587(Pt 19):4681–4693

    Article  CAS  Google Scholar 

  30. Mazzuoli G, Schemann M (2012) Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PLoS One 7:e39887

    Article  CAS  Google Scholar 

  31. Messenger JP, Furness JB (1990) Projections of chemically-specified neurons in the guinea-pig colon. Arch Histol Cytol 53:467–495

    Article  CAS  Google Scholar 

  32. Mulderry PK, Ghatei MA, Spokes RA, Jones PM, Pierson AM, Hamid QA, Kanse S, Amara SG, Burrin JM, Legon S et al (1988) Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience 25:195–205

    Article  CAS  Google Scholar 

  33. Nestor-Kalinoski A, Smith-Edwards KM, Meerschaert K, Margiotta JF, Rajwa B, Davis B, Howard MJ (2021) Quantitative anatomical and functional mapping reveals unique neural circuit connectivity in mouse proximal, middle and distal colon enteric nervous system. Cell Mol Gastroenterol Hepatol. In the press

    Google Scholar 

  34. Nurgali K, Stebbing MJ, Furness JB (2004) Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. J Comp Neurol 468:112–124

    Article  Google Scholar 

  35. Portbury AL, Pompolo S, Furness JB, Stebbing MJ, Kunze WA, Bornstein JC, Hughes S (1995) Cholinergic, somatostatin-immunoreactive interneurons in the guinea pig intestine: morphology, ultrastructure connections and projections. J Anat 187(Pt2):303–321

    Google Scholar 

  36. Qu ZD, Thacker M, Castelucci P, Bagyanszki M, Epstein ML, Furness JB (2008) Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 334:147–161

    Article  CAS  Google Scholar 

  37. Schneider S, Wright CM, Heuckeroth RO (2019) Unexpected roles for the second brain: enteric nervous system as master regulator of bowel function. Annu Rev Physiol 81:235–259

    Article  Google Scholar 

  38. Smith-Edwards KM, Najjar SA, Edwards BS, Howard MJ, Albers KM, Davis BM (2019) Extrinsic primary afferent neurons link visceral pain to colon motility through a spinal reflex in mice. Gastroenterology 157:522–536 e2

    Article  Google Scholar 

  39. Smith TK, Koh SD (2017) A model of the enteric neural circuitry underlying the generation of rhythmic motor patterns in the colon: the role of serotonin. Am J Physiol Gastrointest Liver Physiol 312:G1–G14

    Article  Google Scholar 

  40. Smolilo DJ, Costa M, Hibberd TJ, Wattchow DA, Spencer NJ (2018) Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon. J Comp Neurol 526:1662–1672

    Article  CAS  Google Scholar 

  41. Smolilo DJ, Costa M, Hibberd TJ, Brookes SJH, Wattchow DA, Spencer NJ (2019) Distribution, projections, and association with calbindin baskets of motor neurons, interneurons, and sensory neurons in guinea-pig distal colon. J Comp Neurol 527:1140–1158

    Article  CAS  Google Scholar 

  42. Smolilo DJ, Hibberd TJ, Costa M, Wattchow DA, De Fontgalland D, Spencer NJ (2020) Intrinsic sensory neurons provide direct input to motor neurons and interneurons in mouse distal colon via varicose baskets. J Comp Neurol 528:2033–2043

    Article  CAS  Google Scholar 

  43. Spencer NJ, Smith TK (2004) Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. J Physiol 558:577–596. https://doi.org/10.1113/jphysiol.2004.063586

    Article  CAS  Google Scholar 

  44. Spencer NJ, Dickson EJ, Hennig GW, Smith TK (2006) Sensory elements within the circular muscle are essential for mechanotransduction of ongoing peristaltic reflex activity in guinea-pig distal colon. J Physiol 576:519–531

    Article  CAS  Google Scholar 

  45. Spencer NJ, Hibberd TJ, Travis L, Wiklendt L, Costa M, Hu H, Brookes SJ, Wattchow DA, Dinning PG, Keating DJ, Sorensen J (2018) Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle. J Neurosci 38(24):5507–5522

    Article  CAS  Google Scholar 

  46. Spencer NJ, Hu H (2020) Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 17:338–351

    Article  Google Scholar 

  47. Spencer NJ, Travis L, Wiklendt L, Hibberd TJ, Costa M, Dinning P, Hu H (2020) Diversity of neurogenic smooth muscle electrical rhythmicity in mouse proximal colon. Am J Physiol Gastrointest Liver Physiol 318:G244–G253

    Article  CAS  Google Scholar 

  48. Szurszewski JH, Ermilov LG, Miller SM (2002) Prevertebral ganglia and intestinofugal afferent neurones. Gut 51 Suppl 1:i6–10

    Google Scholar 

  49. Timmermans JP, Scheuermann DW, Stach W, Adriaensen D, De Groodt-Lasseel MH (1992) Functional morphology of the enteric nervous system with special reference to large mammals. Eur J Morphol 30:113–122

    CAS  Google Scholar 

  50. Timmermans JP, Adriaensen D, Cornelissen W, Scheuermann DW (1997) Structural organization and neuropeptide distribution in the mammalian enteric nervous system, with special attention to those components involved in mucosal reflexes. Comp Biochem Physiol A Physiol 118:331–340

    Article  CAS  Google Scholar 

  51. Vanner S, Greenwood-Van Meerveld B, Mawe G, Shea-Donohue T, Verdu EF, Wood J, Grundy D (2016) Fundamentals of neurogastroenterology: basic science. Gastroenterology 150(6):1280–1291

    Google Scholar 

  52. Wright CM, Schneider S, Smith-Edwards KM, Mafra F, Leembruggen AJL, Gonzalez MV, Kothakapa DR, Anderson JB, Maguire BA, Gao T, Missall TA, Howard MJ, Bornstein JC, Davis BM, Heuckeroth RO (2021) scRNA-sequencing reveals new enteric nervous system roles for GDNF, NRTN, and TBX3. Cell Mol Gastroenterol Hepatol 11(5):1548–1592.e1

    Article  Google Scholar 

  53. Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, Van Der Zwan J, Haring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S (2018) Molecular architecture of the mouse nervous system. Cell 174:999–1014 e22

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work presented was funded by the NIH Stimulating Peripheral Activity to Relieve Conditions (SPARC) program. OT2OD023859 (Dr. Marthe J. Howard, PI) and U18EB021790 (Dr. Marthe J. Howard, PI). The studies presented were done in collaboration with Drs. Joseph Margiotta, Andrea Nestor-Kalinoski, Brian Davis, Katheryn Albers, Kristen Smith-Edwards, Robert Heuckeroth and Joel Bornstein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marthe J. Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Howard, M.J. (2022). Refining Enteric Neural Circuitry by Quantitative Morphology and Function in Mice. In: Spencer, N.J., Costa, M., Brierley, S.M. (eds) The Enteric Nervous System II. Advances in Experimental Medicine and Biology, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-031-05843-1_20

Download citation

Publish with us

Policies and ethics