Skip to main content

Embryonic Development of Motility: Lessons from the Chicken

  • Conference paper
  • First Online:
The Enteric Nervous System II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1383))

  • 1132 Accesses

Abstract

I outline here the development of intestinal motility in the chicken embryo. The first contractile events are circular smooth muscle driven calcium waves (E6), that gain a clock-like regularity when interstitial cells of Cajal become electrically active (E14). Soon after longitudinal smooth muscle contractions become prominent (E14), the enteric nervous system starts controlling motility (E16) by coupling the longitudinal and circular contractions via inhibitory neurotransmission. It gives rise to circular-longitudinal antagonism, to the migrating motor complex, and to the polarized ascending contraction-descending relaxation pressure response known as the “law of the intestine”. The kinetics of gut development in the chicken appears to follow faithfully that of humans by simply converting embryonic days of chicken development into embryonic weeks of human development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol 24:99–143

    Article  CAS  Google Scholar 

  2. Beckett EAH, Ro S, Bayguinov Y, Sanders KM, Ward SM (2007) Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract. Dev Dyn 236:60–72

    Article  CAS  Google Scholar 

  3. Bloch A (1904) Des variations de longueur de l’intestin. Bull Mem Soc Anthropol Paris 5:160–197

    Article  Google Scholar 

  4. Chevalier NR (2018) The first digestive movements in the embryo are mediated by mechanosensitive smooth muscle calcium waves. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2017.0322

  5. Chevalier NR, Fleury V, Dufour S, Proux-Gillardeaux V, Asnacios A (2017) Emergence and development of gut motility in the chicken embryo. PLoS One 12:e0172511

    Article  CAS  Google Scholar 

  6. Chevalier NR, Dacher N, Jacques C, Langlois L, Guedj C, Faklaris O (2019) Embryogenesis of the peristaltic reflex. J Physiol 597:2785

    Article  CAS  Google Scholar 

  7. Chevalier N, Ammouche Y, Gomis A, Teyssaire C, de Santa Barbara P, Faure S (2020) Shifting into high gear: how interstitial cells of Cajal change the motility pattern of the developing intestine. Am J Physiol Gastrointest Liver Physiol 319:519

    Article  Google Scholar 

  8. Coulombres A, Coulombres J (1958) Intestinal development: morphogenesis of the villi and musculature. J Embryol Exp Morph 3:403–411

    Google Scholar 

  9. Dinning PG, Wiklendt L, Omari T, Arkwright JW, Spencer NJ, Brookes SJH et al (2014) Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis. Front Neurosci 8:1–15. https://doi.org/10.3389/fnins.2014.00075

    Article  Google Scholar 

  10. Duh G, Mouri N, Warburton D, Thomas DW (2000) EGF regulates early embryonic mouse gut development in chemically defined organ culture. Pediatr Res 48:794–802. https://doi.org/10.1203/00006450-200012000-00016

    Article  CAS  Google Scholar 

  11. Furness JB, Stebbing MJ (2018) The first brain: species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterol Motil 30:1–6. https://doi.org/10.1111/nmo.13234

    Article  Google Scholar 

  12. Gfroerer S, Rolle U (2015) Pediatric intestinal motility disorders. World J Gastroenterol. https://doi.org/10.3748/wjg.v21.i33.9683

  13. Holmberg A, Schwerte T, Fritsche R, Pelster B, Holmgren S (2003) Ontogeny of intestinal motility in correlation to neuronal development in zebrafish embryos and larvae. J Fish Biol 63:318–331. https://doi.org/10.1046/j.1095-8649.2003.00149.x

    Article  Google Scholar 

  14. Huycke TR, Miller BM, Gill HK, Nerurkar NL, Sprinzak D, Mahadevan L et al (2019) Genetic and mechanical regulation of intestinal smooth muscle development. Cell 179:90–105.e21

    Article  CAS  Google Scholar 

  15. Khalipina D, Kaga Y, Dacher N, Chevalier N (2019) Smooth muscle contractility causes the gut to grow anisotropically. J R Soc Interface 16:20190484

    Article  CAS  Google Scholar 

  16. McConalogue K, Furness J (1994) Gastrointestinal neurotransmitters. Bailliere Clin Endocrinol Metab 8:51–76

    Article  CAS  Google Scholar 

  17. Nelson CM, Gleghorn JP, Pang M-F, Jaslove JM, Goodwin K, Varner VD et al (2017) Microfluidic chest cavities reveal that transmural pressure controls the rate of lung development. Development 144:4328–4335. https://doi.org/10.1242/dev.154823

    Article  CAS  Google Scholar 

  18. Newgreen DF, Jahnke I, Allan IJ, Gibbins IL (1980) Differentiation of sympathetic and enteric neurons of the fowl embryo in grafts to the chorio-allantoic membrane. Cell Tissue Res 208:1–19. https://doi.org/10.1007/BF00234168

    Article  CAS  Google Scholar 

  19. Roberts RR, Ellis M, Gwynne RM, Bergner AJ, Lewis MD, Beckett EA et al (2010) The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal. J Physiol 588:1153–1169

    Article  CAS  Google Scholar 

  20. Shimizu H, Koizumi O, Fujisawa T (2004) Three digestive movements in hydra regulated by the diffuse nerve net in the body column. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:623–630. https://doi.org/10.1007/s00359-004-0518-3

    Article  Google Scholar 

  21. Shyer AE, Tallinen T, Nerurkar NL, Wei Z, Gil ES, Kaplan DL et al (2013) Villification: how the gut gets its villi. Science 342:212–218. https://doi.org/10.1126/science.1238842

    Article  CAS  Google Scholar 

  22. Spencer NJ, Dinning PG, Brookes SJ, Costa M (2016) Insights into the mechanisms underlying colonic motor patterns. J Physiol 594:4099–4116. https://doi.org/10.1113/JP271919

    Article  CAS  Google Scholar 

  23. Ueda Y, Yamada S, Uwabe C, Kose K, Takakuwa T (2016) Intestinal rotation and physiological umbilical herniation during the embryonic period. Anat Rec 299:197–206. https://doi.org/10.1002/ar.23296

    Article  CAS  Google Scholar 

  24. van der Werf CS, Halim D, Verheij JBGM, Alves MM, Hofstra RMW (2015) Congenital short bowel syndrome: from clinical and genetic diagnosis to the molecular mechanisms involved in intestinal elongation. Biochim Biophys Acta Mol basis Dis 1852:2352–2361. https://doi.org/10.1016/j.bbadis.2015.08.007

    Article  CAS  Google Scholar 

  25. Yang Y, Paivinen P, Xie C, Krup AL, Makela TP, Mostov KE et al (2020) Ciliary signaling-patterned smooth muscle drives tubular elongation. bioRxiv. https://doi.org/10.1101/2020.08.31.276295

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas R. Chevalier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chevalier, N.R. (2022). Embryonic Development of Motility: Lessons from the Chicken. In: Spencer, N.J., Costa, M., Brierley, S.M. (eds) The Enteric Nervous System II. Advances in Experimental Medicine and Biology, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-031-05843-1_10

Download citation

Publish with us

Policies and ethics