Skip to main content

Enhancing Autonomous Train Safety Through A Priori-Map Based Perception

  • Conference paper
  • First Online:
Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification (RSSRail 2022)

Abstract

Autonomous driving tends to increase use of perception as a tool for analyzing the environment before making a decision that could impact driving. However, recent techniques based on machine learning do not provide the necessary interpretability to ensure sufficient driving safety. Combining multiple sources, deterministic or not, allows results to be cross-referenced and therefore more reliable. In this paper, we propose a novel methodology that aligns an infrastructure mapping system and point cloud analysis for railway tracks and catenaries perception to ensure autonomous train’s safety. By using a deep learning model to recognize and classify rails with the implicit knowledge of the railway infrastructure, we exceed in performance all previous systems of infrastructure: 60.9% in mIoU for tracks segmentation and 9.27 points mMink for points alignment with ground-truth, at an interesting runtime of 20 Hz. Moreover, we propose an embedded solution for automatic monitoring which avoids hours of maintenance traffic on the railway tracks. This solution is used as acquisition system feeding map and perception in real-world data for autonomous trains.

This research work is funded by the French program “Investissements d’Avenir” and is part of the French collaborative project TASV (Train Autonome Service Voyageurs), with SNCF, Alstom Crespin, Thales, Bosch, and Spirops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://ressources.data.sncf.com/pages/accueil/.

References

  1. Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11108–11117 (2020)

    Google Scholar 

  2. Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  3. Behley, J., et al.: SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences. In: IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  4. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  5. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  6. Cheng, R., Razani, R., Taghavi, E., Li, E., Liu, B.: (AF)2–S3Net: attentive feature fusion with adaptive feature selection for sparse semantic segmentation network (2021)

    Google Scholar 

  7. Thomas, H., Qi, C.R., Deschaud, J.-E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6411–6420 (2019)

    Google Scholar 

  8. Wang, S., Suo, S., Ma, W, Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2589–2597 (2018)

    Google Scholar 

  9. Engelmann, F., Kontogianni, T., Leibe, B.: Dilated point convolutions: on the receptive field size of point convolutions on 3D point clouds. In: International Conference on Robotics and Automation, vol. 1 (2020)

    Google Scholar 

  10. Hua, B., Tran, M., Yeung, S.: Pointwise convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 984–993 (2018)

    Google Scholar 

  11. Huang, Q., Wang, W., Neumann, U.: Recurrent slice networks for 3D segmentation of point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2626–2635 (2018)

    Google Scholar 

  12. Zeng, W., Gevers, T.: 3DContextNet: KD tree guided hierarchical learning of point clouds using local and global contextual cues. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  13. Xie, Z., Chen, J., Peng, B.: Point clouds learning with attention-based graph convolution networks. Neurocomputing 402, 245–255 (2020)

    Article  Google Scholar 

  14. He, Y., et al.: Deep learning based 3D segmentation: a survey. arXiv: 2103.05423 (2021)

  15. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012)

    Google Scholar 

  16. EURO NCAP. EURO NCAP advanced: Autonomous Emergency Braking, September 2013

    Google Scholar 

  17. Commission Européene. Norme Européene NF EN 50126 Applications ferroviaires - Spécification et démonstration de la fiabilité, de la disponibilité, de la maintenabilité et de la sécurité, May 2003

    Google Scholar 

  18. UIC. Railtopomodel homepage. https://www.railtopomodel.org/en/

  19. Eastman, C., Teicholz, P., Sacks, R., Liston, K.: BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. Wiley, Hoboken (2008)

    Book  Google Scholar 

  20. EULYNX Homepage. https://www.eulynx.eu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Mahtani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahtani, A., Chouchani, N., Herbreteau, M., Rafin, D. (2022). Enhancing Autonomous Train Safety Through A Priori-Map Based Perception. In: Collart-Dutilleul, S., Haxthausen, A.E., Lecomte, T. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2022. Lecture Notes in Computer Science, vol 13294. Springer, Cham. https://doi.org/10.1007/978-3-031-05814-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05814-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05813-4

  • Online ISBN: 978-3-031-05814-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics