Skip to main content

Infectious Concerns and Prevention for Patients with Ventricular Assist Devices

  • Chapter
  • First Online:
A Guide to Mechanical Circulatory Support

Abstract

Left ventricular assist devices (LVAD) are surgically implanted as a treatment option for advanced heart failure but are not without complications. While the previous chapter discusses complications related to LVADs, this chapter will focus on infectious concerns. Prevalence of infection in durable LVADs occurs in up to 60% of recipients with driveline exit site (DLES) infections being most common (Raymond et al., ASAIO J 56:57–60, 2010; Goldstein et al., J Heart Lung Transplant 31:1151–7, 2012). Many factors contribute to infectious issues such as implantation technique, device choice, patient selection, comorbidities, duration of the device in use, and changes in pump design over time. Infections are costly and lead to readmissions, longer hospital stays, the need for long-term antibiotics, possibly surgery, stroke, and death (Simon et al., Clin Infect Dis 40:1108–15, 2005; Martin et al., Interact Cardiovasc Thorac Surg 11:20–3, 2010). Patients with device infection carry a 70% risk of 1-year mortality (Topkara et al., Ann Thorac Surg 90:1270–77, 2010). Infectious workup is part of patient selection and comorbidity risk factors should be considered such as poor nutrition, obesity, diabetes mellitus, chronic kidney disease, younger age, or poor dentition with periodontitis and abscesses (Raymond et al., ASAIO J 56:57–60, 2010; Goldstein et al., J Heart Lung Transplant 31:1151–7, 2012; Martin et al., Interact Cardiovasc Thorac Surg 11:20–3, 2010; Kamdar et al., J Heart Lung Transplant 31:S19–20, 2012) (see Table 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kusne S, Mooney M, Danziger-Isakov L, et al. An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection. J Heart Lung Transplant. 2017;36(10):1137–53. https://doi.org/10.1016/j.healun.2017.06.007. Epub 2017 Jun 23.

    Article  Google Scholar 

  2. Aslam S, Xie R, Cowger J, Kirklin J, Schueler S, de By T, et al. Bloodstream infections in mechanical circulatory support device recipients in the International Society of Heart and Lung Transplantation Mechanically Assisted Circulation Support Registry: epidemiology, risk factors and mortality. J Heart Lung Transplant. 2018;37(8):1013–20.

    Article  Google Scholar 

  3. Aslam S. Ventricular assist device infections. Cardiol Clin. 2018;36(4):507–17. https://doi.org/10.1016/j.ccl.2018.06.005. Epub 2018 Sept 15.

    Article  Google Scholar 

  4. Mourad A, Arif S, Bishawi M, Milano C, Miller RA, Maskarinec SA. Surgical infection prophylaxis prior to left ventricular assist device implantation: a survey of clinical practice. J Card Surg. 2020;35(10):2672–8. https://doi.org/10.1111/jocs.14882. Epub 2020 Jul 17.

    Article  Google Scholar 

  5. Zinoviev R, Lippincott CK, Keller SC, Gilotra NA. In full flow: left ventricular assist device infections in the modern era. Open Forum Infect Dis. 2020;7(5):ofaa124. https://doi.org/10.1093/ofid/ofaa124.

    Article  Google Scholar 

  6. Topkara VK, Kondrareddy S, Malik F, et al. Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg. 2010;90:1270–7.

    Article  Google Scholar 

  7. Sharma V, Deo SV, Stulak JM, Durham LA 3rd, Daly RC, Park SJ, Baddour LM, Mehra K, Joyce LD. Driveline infections in left ventricular assist devices: implications for destination therapy. Ann Thorac Surg. 2012;94(5):1381–6. Epub 2012 Jul 20.

    Article  Google Scholar 

  8. Chen W, Dilsizian V. Diagnosis and image-guided therapy of cardiac left ventricular assist device infections. Semin Nucl Med. 2020. pii: S0001-2998(20)30122-7. https://doi.org/10.1053/j.semnuclmed.2020.11.002. Epub ahead of print.

  9. Nienaber JJ, Kusne S, Riaz T, et al., Mayo Cardiovascular Infections Study Group. Clinical manifestations and management of left ventricular assist device-associated infections. Clin Infect Dis. 2013;57:1438–48.

    Google Scholar 

  10. Siméon S, Flécher E, Revest M, et al. Left ventricular assist device-related infections: a multicentric study. Clin Microbiol Infect. 2017;23:748–51.

    Article  Google Scholar 

  11. Tong MZ, Smedira NG, Soltesz EG, et al. Outcomes of heart transplant after left ventricular assist device specific and related infection. Ann Thorac Surg. 2015;100:1292–7.

    Article  Google Scholar 

  12. Gordon RJ, Weinberg AD, Pagani FD, et al., Ventricular Assist Device Infection Study Group. Prospective, multicenter study of ventricular assist device infections. Circulation. 2013;127:661–702.

    Google Scholar 

  13. Goldstein DJ, Naftel D, Holman W, et al. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant. 2012;31(11):1151–7. https://doi.org/10.1016/j.healun.2012.05.004. Epub 2012 Jul 4.

    Article  Google Scholar 

  14. Leuck AM. Left ventricular assist device driveline infections: recent advances and future goals. J Thorac Dis. 2015;7(12):2151–7. https://doi.org/10.3978/j.issn.2072-1439.2015.11.06.

    Article  Google Scholar 

  15. O’Horo JC, Abu Saleh OM, Stulak JM, Wilhelm MP, Baddour LM, Rizwan Sohail M. Left ventricular assist device infections: a systematic review. ASAIO J. 2018;64(3):287–94. https://doi.org/10.1097/MAT.0000000000000684. PMID: 29095732; PMCID: PMC5920737.

  16. Martin SI, Wellington L, Stevenson KB, et al. Effect of body mass index and device type on infection in left ventricular assist device support beyond 30 days. Interact Cardiovasc Thorac Surg. 2010;11(1):20–3.

    Article  Google Scholar 

  17. Hernandez GA, Breton JDN, Chaparro SV. Driveline infection in ventricular assist devices and its implication in the present era of destination therapy. Open J Cardiovasc Surg. 2017;9:1179065217714216. https://doi.org/10.1177/1179065217714216.

    Article  Google Scholar 

  18. John R, Aaronson KD, Pae WE, Acker MA, et al., HeartWare Bridge to Transplant ADVANCE Trial Investigators. Drive-line infections and sepsis in patients receiving the HVAD system as a left ventricular assist device. J Heart Lung Transplant 2014;33(10):1066–1073. https://doi.org/10.1016/j.healun.2014.05.010. Epub 2014 Jun 4.

  19. Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med. 2018;378:1386–95.

    Article  Google Scholar 

  20. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device—final report. N Engl J Med. 2019;380:1618–27.

    Article  Google Scholar 

  21. Patel CB, Blue L, Cagliostro B, et al. Left ventricular assist systems and infection-related outcomes: a comprehensive analysis of the MOMENTUM 3 trial. J Heart Lung Transplant. 2020;39:774–81.

    Article  Google Scholar 

  22. Raymond AL, Kfoury AG, Bishop CJ, et al. Obesity and left ventricular assist device driveline exit site infection. ASAIO J. 2010;56:57–60.

    Article  Google Scholar 

  23. Patel S, Choi JH, Moncho Escrivá E, Rizvi SSA, Maynes EJ, Samuels LE, Luc JGY, Morris RJ, Massey HT, Tchantchaleishvili V, Aburjania N. Single versus multi-drug antimicrobial surgical infection prophylaxis for left ventricular assist devices: a systematic review and meta-analysis. Artif Organs. 2019;43(7):E124–38. https://doi.org/10.1111/aor.13441. Epub 2019 Mar 22.

    Article  CAS  Google Scholar 

  24. Kamdar F, Eckman P, Goldstein D, et al. 31 Pump-related infections (PRI) after implantation of continuous-flow left ventricular devices (CF LVADs): analysis of 2900 patients from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). J Heart Lung Transplant. 2012;31:S19–20.

    Article  Google Scholar 

  25. Feldman D, Pamboukian SV, et al. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87. ISSN: 1053-2498

    Article  Google Scholar 

  26. Bernhardt AM, Schlöglhofer T, Lauenroth V, et al., Driveline Expert Staging and Care DESTINE Study Group, Ventricular Assist Device Driveline Infection Study Group. Prevention and early treatment of driveline infections in ventricular assist device patients—the DESTINE staging proposal and the first standard of care protocol. J Crit Care. 2020;56:106–12. https://doi.org/10.1016/j.jcrc.2019.12.014. Epub 2019 Dec 17.

  27. Cross HH. Obtaining a wound swab culture specimen. Nursing. 2014;44(7):68–9. https://doi.org/10.1097/01.NURSE.0000446645.33489.2e.

    Article  Google Scholar 

  28. Kirklin JK, Pagani FD, Goldstein DJ, John R, et al. American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. J Thorac Cardiovasc Surg. 2020;159(3):865–96. https://doi.org/10.1016/j.jtcvs.2019.12.021. Epub 2020 Jan 23.

    Article  Google Scholar 

  29. Pereda D, Conte JV. Left ventricular assist device driveline infections. Cardiol Clin. 2011;29(4):515–27.

    Article  Google Scholar 

  30. Slaughter MS, Pagani FD, Rogers JG, et al. Clinical management of continuous flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(Suppl):S1–39.

    Article  Google Scholar 

  31. Toda K, Sawa Y. Clinical management for complications related to implantable LVAD use. Gen Thorac Cardiovasc Surg. 2015;63(1):1–7. https://doi.org/10.1007/s11748-014-0480-0. Epub 2014 Nov 5.

    Article  Google Scholar 

  32. Asaki SY, Dean McKenzie E, Elias B, Adachi I. Rectus-sparing technique for driveline insertion of ventricular assist device. Ann Thorac Surg. 2015;100:1920–2.

    Article  Google Scholar 

  33. Qu Y, McGiffin D, Kure C, Ozcelik B, Fraser J, Thissen H, Peleg AY. Biofilm formation and migration on ventricular assist device drivelines. J Thorac Cardiovasc Surg. 2020;159(2):491–502.e2. https://doi.org/10.1016/j.jtcvs.2019.02.088. Epub 2019 Mar 6.

    Article  Google Scholar 

  34. Dean D, Kallel F, Ewald GA, Tatooles A, et al., SSI Registry Investigators. Reduction in driveline infection rates: results from the HeartMate II Multicenter Driveline Silicone Skin Interface (SSI) Registry. J Heart Lung Transplant. 2015;34(6):781–9. https://doi.org/10.1016/j.healun.2014.11.021. Epub 2014 Dec 5.

  35. Yarboro LT, Bergin JD, Kennedy JL, et al. Technique for minimizing and treating driveline infection. Ann Cardiothorac Surg. 2014;3:557–62.

    Google Scholar 

  36. Son AY, Stein LH, DeAnda A, et al. Impact of chlorhexidine gluconate intolerance on driveline infections during chronic HeartMate II left ventricular assist device support. Int J Artif Organs. 2017;39:570–4.

    Article  Google Scholar 

  37. Banwell H. What is the evidence for tissue regeneration impairment when using a formulation of PVP-I antiseptic on open wounds? Dermatology. 2006;212(Suppl 1):66–76. https://doi.org/10.1159/000089202.

    Article  CAS  Google Scholar 

  38. Cagliostro B, Levin AP, Parkis G, et al. Reduction of drive line infection in continuous flow assist devices: use of standard kit including silver dressing and anchoring device. J Heart Lung Transplant. 2016;35:108–14. https://doi.org/10.1016/j.healun.2015.06.010.

    Article  Google Scholar 

  39. Selekof J, Lindsay M. Left ventricular assist devices: an innovative approach to decrease infections using a silver contact dressing. J Wound Ostomy Continence Nurs. 2009;36(3S):s12.

    Article  Google Scholar 

  40. Stahovich M, Sundareswaran KS, Fox S, et al. Reduce driveline trauma through stabilization and exit site management: 30 days feasibility results from the multicenter RESIST study. ASAIO J. 2016;62(3):240–5. https://doi.org/10.1097/MAT.0000000000000374.

    Article  Google Scholar 

  41. Baronetto A, Centofanti P, Attisani M, et al. A simple device to secure ventricular assist device driveline and prevent exit-site infection. Interact Cardiovasc Thorac Surg. 2014;18(4):415–7. https://doi.org/10.1093/icvts/ivt549.

    Article  Google Scholar 

  42. Shapiro JM, Bond EL, Garman JK. Use of a chlorhexidine dressing to reduce microbial colonization of epidural catheters. Anesthesiology. 1990;73:625–31.

    Article  CAS  Google Scholar 

  43. Evans AC, Wright GA, McCandless SP, et al. Ultraviolet radiation affects Thoratec HeartMate II driveline mechanical properties: a pilot experiment. ASAIO J. 2015;61:731–3.

    Article  CAS  Google Scholar 

  44. Iseler J, Hadzic KG. Developing a kit and video to standardize changes of the left ventricular assist device dressings. Prog Transplant. 2015;25(3):224–9.

    Article  Google Scholar 

  45. Richards N, Anderson L, Ballew C, et al. ICCAC best practice consensus guidelines: driveline management reference document.

    Google Scholar 

  46. Wus L, Manning M, Entwistle JW. Left ventricular assist device driveline infection and the frequency of dressing change in hospitalized patients. Heart Lung. 2015;44(3):225–9.

    Article  Google Scholar 

  47. Kusne S, Danzigner-Isakov L, Mooney M. Infection control and prevention practices for mechanical circulatory support: an international survey. J Heart Lung Transplant. 2013;32:484.

    Article  Google Scholar 

  48. Cannon A, Elliott T, Ballwe C, et al. Variability in infection control measures for the percutaneous lead among programs implanting long-term ventricular assist devices in the United States. Prog Transplant. 2012;22:351–9.

    Article  Google Scholar 

  49. Dayton P, Feilmeier M, Sedberry S. Does postoperative showering or bathing of a surgical site increase the incidence of infection? A systematic review of the literature. J Foot Ankle Surg. 2013;52:612–4.

    Article  Google Scholar 

  50. Aburjania N, Sherazi S, Tchantchaleishvili V, Alexis JD, Hay CM. Stopping conventional showering decreases Pseudomonas infections in left ventricular assist device patients. Int J Artif Organs. 2017;40(6):282–5. https://doi.org/10.5301/ijao.5000590. Epub 2017 Apr 18.

    Article  Google Scholar 

  51. Hannan MM, et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant. 2011;30(4):375–84.

    Article  Google Scholar 

  52. Kretlow JD, Brown RH, Wolfswinkel EM, Xue AS, Hollier LH Jr, Ho JK, Mallidi HR, Gregoric ID, Frazier OH, Izaddoost SA. Salvage of infected left ventricular assist device with antibiotic beads. Plast Reconstr Surg. 2014;133(1):28e–38e. https://doi.org/10.1097/01.prs.0000436837.03819.3f.

    Article  CAS  Google Scholar 

  53. Olmsted RZ, Critsinelis A, Kurihara C, Kawabori M, Sugiura T, Civitello AB, Morgan JA. Severe LVAD-related infections requiring surgical treatment: incidence, predictors, effect on survival, and impact of device selection. J Card Surg. 2019;34:82–91.

    Article  Google Scholar 

  54. Levy DT, Guo Y, Simkins J, Puius YA, Muggia VA, Goldstein DJ, D’Alessandro DA, Minamoto GY. Left ventricular assist device exchange for persistent infection: a case series and review of the literature. Transpl Infect Dis. 2014;16(3):453–60. https://doi.org/10.1111/tid.12207. Epub 2014 Apr 7.

    Article  CAS  Google Scholar 

  55. Haddad E, Lescure F-X, Ghodhbane W, Lepage L, D’Humieres C, Vindrios W, Kirsch M. Left ventricular assist pump pocket infection: conservative treatment strategy for destination therapy candidates. Int J Artif Organs. 2017;40(3):90–5.

    Article  Google Scholar 

  56. Kimura M, Nishimura T, Kinoshita O, Okada S, Inafuku H, Kyo S, Ono M. Successful treatment of pump pocket infection after left ventricular assist device implantation by negative pressure wound therapy and omental transposition. Ann Thorac Cardiovasc Surg. 2014;20(Suppl):842–5. https://doi.org/10.5761/atcs.cr.12.02192. Epub 2013 Mar 26.

    Article  Google Scholar 

  57. Moazami N, Milano CA, John R, Sun B, Adamson RM, Pagani FD, Smedira N, Slaughter MS, Farrar DJ, Frazier OH, HeartMate II Investigators. Pump replacement for left ventricular assist device failure can be done safely and is associated with low mortality. Ann Thorac Surg. 2013;95(2):500–5. https://doi.org/10.1016/j.athoracsur.2012.09.011. Epub 2012 Dec 20.

    Article  Google Scholar 

  58. Chamogeorgakis T, Koval CE, Smedira NG, Starling RC, Gonzalez-Stawinski GV. Outcomes associated with surgical management of infections related to the HeartMate II left ventricular assist device: implications for destination therapy patients. J Heart Lung Transplant. 2012;31(8):904–6. https://doi.org/10.1016/j.healun.2012.05.006.

    Article  Google Scholar 

  59. Yost G, Coyle L, Gallagher C, Cotts W, Pappas P, Tatooles A. Outcomes following left ventricular assist device exchange: focus on the impacts of device infection. ASAIO J. 2020; https://doi.org/10.1097/MAT.0000000000001287. Epub ahead of print.

  60. Jacoby A, Stranix JT, Cohen O, Louie E, Balsam LB, Levine JP. Flap coverage for the treatment of exposed left ventricular assist device (LVAD) hardware and intractable LVAD infections. J Card Surg. 2017;32(11):732–7. https://doi.org/10.1111/jocs.13230. Epub 2017 Nov 3.

    Article  Google Scholar 

  61. van Valen R, Zuijdendorp HM, Birim Ö, Brugts JJ, Bogers AJJC. Challenges in destination LVAD therapy, management of mediastinitis and device infection, a case report. Heart Lung Circ. 2018;27(3):e7–e10. https://doi.org/10.1016/j.hlc.2017.06.720. Epub 2017 Jul 8.

    Article  Google Scholar 

  62. Hodson T, West JM, Poteet SJ, Lee PH, Valerio IL. Instillation negative pressure wound therapy: a role for infected LVAD salvage. Adv Wound Care (New Rochelle). 2019;8(3):118–24. https://doi.org/10.1089/wound.2018.0832. Epub 2019 Mar 5.

    Article  Google Scholar 

  63. Tahir S, Malone M, Hu H, Deva A, Vickery K. The effect of negative pressure wound therapy with and without instillation on mature biofilms in vitro. Materials (Basel). 2018;11(5):811. https://doi.org/10.3390/ma11050811.

    Article  CAS  Google Scholar 

  64. Carr C, Jacob J, Soon P, Karon BL, Williamson EE, Araoz PL. CT of left ventricular assist devices. Radiographics. 2010;30(2):429–45.

    Article  Google Scholar 

  65. Litzer PY, Manrique A, Etienne M, Salles A, Edet-Sanson A, Vera P, Bessou JP, Hitzel A. Leukocyte SPECT/CT for detecting infection of left-ventricular-assist devices: preliminary results. J Nucl Med. 2010;51(7):1044–8. https://doi.org/10.2967/jnumed.109.070664. Epub 2010 Jun 16.

    Article  Google Scholar 

  66. Tlili G, Picard F, Pinaquy JB, Domingues-Dos-Santos P, Bordenave L. The usefulness of FDG PET/CT imaging in suspicion of LVAD infection. J Nucl Cardiol. 2014;21(4):845–8. https://doi.org/10.1007/s12350-014-9872-x. Epub 2014 Feb 27.

    Article  Google Scholar 

  67. Bar-Shalom R, Yefremov N, Guralnik L, Keidar Z, Engel A, Nitecki S, Israel O. SPECT/CT using 67Ga and 111In-labeled leukocyte scintigraphy for diagnosis of infection. J Nucl Med. 2006;47(4):587–94.

    Google Scholar 

  68. Chen W, Kim J, Molchanova-Cook OP, Dilsizian V. The potential of FDG PET/CT for early diagnosis of cardiac device and prosthetic valve infection before morphologic damages ensue. Curr Cardiol Rep. 2014;16(3):459. https://doi.org/10.1007/s11886-013-0459-y.

    Article  Google Scholar 

  69. Chen W, Sajadi MM, Dilsizian V. Merits of FDG PET/CT and functional molecular imaging over anatomic imaging with echocardiography and CT angiography for the diagnosis of cardiac device infections. JACC Cardiovasc Imaging. 2018;11(11):1679–91. https://doi.org/10.1016/j.jcmg.2018.08.026.

    Article  Google Scholar 

  70. Kim J, Feller ED, Chen W, Liang Y. FDG PET/CT for early detection and localization of left ventricular assist device infection. JACC Cardiovasc Imaging. 2019;12(4):722–9.

    Article  CAS  Google Scholar 

  71. Tam MC, Patel VN, Weinberg RL, Hulten EA, Aaronson KD, Pagani FD, Corbett JR, Murthy VL. Diagnostic accuracy of FDG PET/CT in suspected LVAD infections: a case series, systematic review, and meta-analysis. JACC Cardiovasc Imaging. 2020;13(5):1191–202. https://doi.org/10.1016/j.jcmg.2019.04.024. Epub 2019 Jul 17.

    Article  Google Scholar 

  72. Ten Hove D, Treglia G, Slart RHJA, Damman K, Wouthuyzen-Bakker M, Postma DF, Gheysens O, Borra RJH, Mecozzi G, van Geel PP, Sinha B, Glaudemans AWJM. The value of 18F-FDG PET/CT for the diagnosis of device-related infections in patients with a left ventricular assist device: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2021;48(1):241–53. https://doi.org/10.1007/s00259-020-04930-8. Epub 2020 Jun 27.

    Article  Google Scholar 

  73. Sommerlath Sohns JM, Kröhn H, Schöde A, Derlin T, Haverich A, Schmitto JD, Bengel FM. 18F-FDG PET/CT in left-ventricular assist device infection: initial results supporting the usefulness of image-guided therapy. J Nucl Med. 2020;61(7):971–6. https://doi.org/10.2967/jnumed.119.237628. Epub 2019 Dec 5.

    Article  CAS  Google Scholar 

  74. Kanjanahattakij N, Horn B, Abdulhadi B, Wongjarupong N, Mezue K, Rattanawong P. Blood stream infection is associated with cerebrovascular accident in patients with left ventricular assist device: a systematic review and meta-analysis. J Artif Organs. 2018;21(3):271–7. https://doi.org/10.1007/s10047-018-1034-5. Epub 2018 Mar 16.

    Article  CAS  Google Scholar 

  75. Forest SJ, Bello R, Friedmann P, Casazza D, Nucci C, Shin JJ, D’Alessandro D, Stevens G, Goldstein DJ. Readmissions after ventricular assist device: etiologies, patterns, and days out of hospital. Ann Thorac Surg. 2013;95(4):1276–81. https://doi.org/10.1016/j.athoracsur.2012.12.039. Epub 2013 Mar 5.

    Article  Google Scholar 

  76. Esquer Garrigos Z, Castillo Almeida NE, Gurram P, Vijayvargiya P, Corsini Campioli CG, Stulak JM, Rizza SA, Baddour LM, Rizwan Sohail M. Management and outcome of left ventricular assist device infections in patients undergoing cardiac transplantation. Open Forum Infect Dis. 2020;7(8):ofaa303. https://doi.org/10.1093/ofid/ofaa303.

    Article  Google Scholar 

  77. Monkowski DH, Axelrod P, Fekete T, Hollander T, Furukawa S, Samuel R. Infections associated with ventricular assist devices: epidemiology and effect on prognosis after transplantation. Transpl Infect Dis. 2007;9(2):114–20. https://doi.org/10.1111/j.1399-3062.2006.00185.x.

    Article  CAS  Google Scholar 

  78. Cho S-M, Hassett C, Rice C, Starling R, Katzan I, Uching K. What causes LVAD-associated ischemic stroke? Surgery, pump thrombosis, antithrombotics, and infection. ASAIO J. 2019;65:775–80.

    Article  Google Scholar 

  79. Aggarwal A, Gupta A, Kumar S, Baumblatt JA, Pauwaa S, Gallagher C, Treitman A, Pappas P, Tatooles A, Bhat G. Are blood stream infections associated with an increased risk of hemorrhagic stroke in patients with a left ventricular assist device? ASAIO J. 2012;58(5):509–13. https://doi.org/10.1097/MAT.0b013e318260c6a6.

    Article  CAS  Google Scholar 

  80. Moayedi Y, et al. Outcomes of patients with infection related to a ventricular assist device after heart transplantation. Clin Transplant. 2019;33:1–6.

    Article  Google Scholar 

  81. Simon D, Fischer S, Grossman A, Downer C, Hota B, Heroux A, Trenholme G. Left ventricular assist device-related infection: treatment and outcome. Clin Infect Dis. 2005;40(8):1108–15. https://doi.org/10.1086/428728. Epub 2005 Mar 11.

    Article  Google Scholar 

  82. Poston RS, Husain S, Sorce D, Stanford E, Kusne S, Wagener M, Griffith BP, Kormos RL. LVAD bloodstream infections: therapeutic rationale for transplantation after LVAD infection. J Heart Lung Transplant. 2003;22(8):914–21. https://doi.org/10.1016/s1053-2498(02)00645-9.

    Article  Google Scholar 

  83. Lerman DT, Hamilton KW, Byrne D, Lee DF, Zeitler K, Claridge T, Gray J, Minamoto GY. The impact of infection among left ventricular assist device recipients on post-transplantation outcomes: a retrospective review. Transpl Infect Dis. 2018;20(6):e12995. https://doi.org/10.1111/tid.12995. Epub 2018 Oct 10.

    Article  Google Scholar 

  84. Chahal D, Sepehry AA, Nazzari H, Wright AJ, Toma M. The impact of left ventricular assist device infections on postcardiac transplant outcomes: a systematic review and meta-analysis. ASAIO J. 2019;65(8):827–36. https://doi.org/10.1097/MAT.0000000000000921.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krista Marz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stahovich, M., Marz, K., Nowaczyk, J. (2022). Infectious Concerns and Prevention for Patients with Ventricular Assist Devices. In: Stewart, S., Blood, P. (eds) A Guide to Mechanical Circulatory Support. Springer, Cham. https://doi.org/10.1007/978-3-031-05713-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05713-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05712-0

  • Online ISBN: 978-3-031-05713-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics