Skip to main content

Other Worlds in the Cosmos: From Philosophy to Scientific Reality

  • Chapter
  • First Online:
Advances in Cosmology

Abstract

Are there other Worlds in the universe? Does life exist elsewhere in the cosmos? The technology of our time has made it possible to transform this dream of antiquity into a fascinating field of current astrophysics. Twenty-five years after the discovery of a first planet orbiting a star like our sun, a few thousand planetary systems have been discovered. These first discoveries revealed to us the astonishing diversity of these systems, very different from our solar system: orbital periods of a few hours, ocean planets, rocky planets, or gas giants with sometimes retrograde orbits, etc. After the euphoria of these first discoveries, the era of studying the atmospheres of exoplanets is now beginning. Fascinating, despite the enormous contrast between the luminosity of the star and that very weak light, reflected by the planet, the analysis of the atmospheres begins and will benefit from space telescopes and giant telescopes on the ground (up to diameters of 39 m). Does life exist in other places in the cosmos?—Vertiginous question—. The analysis of planetary atmospheres may reveal biosignatures, these spectral characteristics induced by the development of life. Advances in spectroscopy studies of exoplanets make us think that the search for extraterrestrial life is possible.

Do there exist many worlds, or is there but a single world? This is one of the most noble and exalted questions in the study of Nature.

Albertus Magnus (circa 1200–1280)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term core accretion is sometimes used in a more restricted sense for the formation of giant planets only [87, 88]. Here we use it to describe the entire bottom-up growth process starting from tiny solids (dust).

References

  1. P. Connes, History of the Plurality of Worlds. The Myths of Extraterrrestrials Through the Ages, ed. by J. Lequeux (Springer Historical & Cultural Astronomy Series, 2020). ISBN: 978–3–030–41448–1. https://doi.org/10.1007/978-3-030-41448-1

  2. S.J. Dick, From the physical world to the biological universe: historical developments underlying SETI bioastronomy. The Search for Extraterrestrial Life-The Exploration Broadens Lecture Notes in Physics, ed. by J.Heidmann, M.J. Klein, vol. 390, Conference Proceedings. Bioastronomy (Springer, Berlin, Heidelberg, 1991), pp. 356–363. ISBN: 978–3–540–54752–5

    Google Scholar 

  3. O. Struve, Proposal for a project of high-precision stellar radial velocity work. Observatory 72, 199–200 (1952)

    ADS  Google Scholar 

  4. S.V.W. Beckwith, A.I. Sargent, R.S. Chini et al., A survey for circumstellar disks around young stellar objects. A J 99, 924–945 (1990)

    Article  ADS  Google Scholar 

  5. M.J. McCaughrean, C.R. O’Dell, Direct imaging of circumstellar disks in the Orion Nebula. A. J. vol. 111, n.5, 1977 (Published online by Cambridge University Press, 1996), 12 Apr. 2016. https://doi.org/10.1086/117934

  6. K. Strand, 61 Cygni as a triple system. Publ. Astron. Soc. Pacif. 55, 322, 29–32 (1943). https://www.jstor.org/stable/40670169

  7. S.L. Lippincott, The unseen companion of the fourth nearest star, Lalande 21185. A.J. 65, 349L (1960)

    Google Scholar 

  8. P. Van de Kamp, Astrometric study of Barnard’s star from plates taken with the 24-inch Sproul refractor. A.J 68, 515–521 (1963).https://doi.org/10.1086/109001

  9. S.H. Pravdo, S.B. Shaklan, An ultracool star’s candidate planet. ApJ 700, 623–632 (2009). https://iopscience.iop.org/article/10.1088/0004-637X/700/1/623

    Article  ADS  Google Scholar 

  10. M. Perryman, J. Hartman, G.Á. Bakos, L. Lindegren, Astrometric exoplanet detection with Gaia. ApJ 797, 14. 22pp. (2014). https://doi.org/10.1088/0004-637X/797/1/14

  11. D. Belorizky, Le soleil, étoile variable. L’Astronomie 52, 359–361 (1938)

    ADS  Google Scholar 

  12. B. Campbell, G.A.H. Walker, Precision radial velocities with an absorption cell. PASP 91, 540–545 (1979)

    Article  ADS  Google Scholar 

  13. G.W. Marcy, R.P. Butler, Precision radial velocities with an iodine absorption cell. PASP 104, 270–277 (1992). https://iopscience.iop.org/article/10.1086/132989

  14. P. Fellgett, A proposal for a radial velocity photometer. Opt. Acta: Int. J. Opt. 2(1), 9–16 (1955). https://doi.org/10.1080/713820996

    Article  ADS  Google Scholar 

  15. F. Pepe, S. Cristiani, R. Rebolo et al., ESPRESSO at VLT. On-sky performance and first results. A&A 645, A96. 26pp. (2021). https://doi.org/10.1051/0004-6361/202038306

  16. A. Baranne, M. Mayor, J.L. Poncet, CORAVEL: a new tool for radial velocity measurements. Vistas Astron. 23, 279 (1979). https://doi.org/10.1016/0083-6656(79)90016-3

    Article  ADS  Google Scholar 

  17. R.F. Griffin, A photoelectric radial-velocity spectrometer. ApJ. 148, 465–476 (1967). https://ui.adsabs.harvard.edu/abs/1967ApJ...148..465G/abstract

    Article  ADS  Google Scholar 

  18. A. Baranne, D. Queloz, M. Mayor et al., ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 119, 373–390 (1996). https://doi.org/10.1051/aas:1996251

    Article  ADS  Google Scholar 

  19. M. Mayor, F. Pepe, D. Queloz et al., Setting new standards with HARPS. Messenger 114, 20–24 (2003). ISSN0722–6691

    Google Scholar 

  20. G.W. Marcy, R.P. Butler, Brown dwarfs and planets around solar-type stars: searches by precise velocities, in The Bottom of the Main Sequenceand Beyond. Proceedings of the ESO Workshop Held in Garching, Germany, 10–12 Aug. 1994, ed. by Christopher G. Tinney. Part of the ESO Astrophysics Symposia, Book Series (Springer-Verlag Berlin Heidelberg New York, 1995), pp. 98–108 (1994)

    Google Scholar 

  21. G.A.H. Walker, A.R. Walker, A.W. Irwin et al., A search for Jupiter-mass companions to nearby stars. Icarus 116, 359–375 (1995). https://doi.org/10.1006/icar.1995.1130

  22. A.P. Boss, Proximity Jupiter-Like planets to low-mass stars. Science 267(5196), 360–362 (1995). https://doi.org/10.1126/science.267.5196.360

  23. M. Mayor, D. Queloz, A Jupiter-mass companion to a solar-type star”. Nature (London) 378, 355–359 (1995). https://doi.org/10.1038/378355a0

    Article  ADS  Google Scholar 

  24. D.N.C. Lin, P. Bodenheimer, D.C. Richardson, Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996). https://doi.org/10.1038/380606a0

    Article  ADS  Google Scholar 

  25. P. Goldreich, S. Tremaine, Disk-satellite interactions. ApJ. 241, 425–441 (1980). https://doi.org/10.1086/158356

    Article  MathSciNet  ADS  Google Scholar 

  26. D.N.C. Lin, J. Papaloizou, On the tidal interaction between protoplanets and the protoplanetary disk. III—Orbital migration of protoplanets. ApJ 309, 846–857 (1986)

    Article  ADS  Google Scholar 

  27. J. Papaloizou, D.N.C. Lin, On the tidal interaction between protoplanets and the primordial solar nebula. I—Linear calculation of the role of angular exchange. ApJ 285, 818–834 (1984)

    Article  ADS  Google Scholar 

  28. W.R. Ward, Density waves in the solar nebula: differential Lindblad torque. Icarus 67, 164–180 (1986). https://doi.org/10.1016/0019-1035(86)90182-X

    Article  ADS  Google Scholar 

  29. R.P. Butler, G.W. Marcy, A planet orbiting 47 Ursae Majoris. ApJL 464, L153–L156 (1996)

    Article  ADS  Google Scholar 

  30. D. Charbonneau, T.M. Brown, D.W. Latham, M. Mayor, Detection of planetary transits across a Sun-like star. ApJ 529, L45–L48 (2000)

    Article  ADS  Google Scholar 

  31. G.W. Henry, G.W. Marcy, R.P. Butler, S. Vogt, A transiting “51Peg-like” planet. ApJ 529, L41–L44 (2000). https://doi.org/10.1086/312458

    Article  ADS  Google Scholar 

  32. T.M. Brown, D. Charbonneau, R.L. Gilliland et al., Hubble Space Telescope time-series photometry of the transiting planet of HD 209458. ApJ 552, 699–709 (2001)

    Article  ADS  Google Scholar 

  33. N.M. Batalha, J.F. Rowe, S.T. Bryson et al., Planetary Candidates Observed by Kepler. III. Analysis of the first 16 months of data. ApJSuppl. 204(2), 24 21 pp. (2013). https://doi.org/10.1088/0067-0049/204/2/24

  34. G. Frustagli, E. Poretti, T. Milbourne et al., An ultra-short period rocky super-Earth orbiting the G2-star HD 80653. A&A, 633, A133, 11 pp. (2020). https://doi.org/10.1051/0004-6361/201936689

  35. L. Zeng, S.B. Jacobsen, D.D. Sasselov et al., Growth model interpretation of planet size distribution. Proc. Natl. Acad. Sci. USA 116, 9723–9728 (2019). https://doi.org/10.1073/pnas.1812905116

    Article  ADS  Google Scholar 

  36. A.S. Burrows, Highlights in the study of exoplanet atmospheres. Nature 513, 345–352 (2014). https://doi.org/10.1038/nature13782

    Article  ADS  Google Scholar 

  37. N. Madhusudhan, ExoFrontiers: Big Questions in Exoplanetary Science, ed. by N. Madhusudhan. 306 pp. Oct. 2021 (Copyright © IOP Publishing Ltd 2021, 2021). IOP ebook. Online ISBN: 978–0–7503–1472–5; Print ISBN: 978–0–7503–1470–1. https://doi.org/10.1088/2514-3433/abfa8f

  38. F. Pepe, D. Ehrenreich, M. Meyer, Instrumentation for the detection and characterization of exoplanets. Nature 513, 358–366 (2014). https://doi.org/10.1038/nature13784

    Article  ADS  Google Scholar 

  39. S. Seager, D. Sasselov, Theoretical transmission spectra during extrtasolar planet transits. ApJ 537(2), 916–921 (2000)

    Article  ADS  Google Scholar 

  40. M. Gillon, E. Jehin, S.M. Lederer et al., Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221–224 (2016). https://doi.org/10.1038/nature17448

    Article  ADS  Google Scholar 

  41. M. Gillon, A.H.M.J. Triaud, B.-O. Demory et al., Demory, B.O. 2017, Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017). https://doi.org/10.1038/nature21360

    Article  ADS  Google Scholar 

  42. R.K. Kopparapu, R. Ramirez, J.F. Kasting et al., Habitable Zones around main-sequence stars: new estimates. ApJ 765, 131 16, pp. (2013). https://iopscience.iop.org/article/10.1088/0004-637X/765/2/131/meta

  43. M. Turbet, E. Bolmont, G. Chaverot et al., Day-night cloud asymmetry prevents early oceans on Venus but not on Earth. Nature 598, 276–280 (2021). https://doi.org/10.1038/s41586-021-03873-w

  44. D. Charbonneau, T.M. Brown, R.W. Noyes, R.L. Gilliland, The detection of an Extrasolar Planet Atmosphere. ApJ 568, 377–384 (2002). https://doi.org/10.1086/338770

    Article  ADS  Google Scholar 

  45. A. Vidal-Madjar, A. Lecavelier des Etangs, J.M. Désert, An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003). https://doi.org/10.1038/nature01448

  46. D.K. Sing, J.J. Fortney, N. Nikolov et al., A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016). https://doi.org/10.1038/nature16068

    Article  ADS  Google Scholar 

  47. S. Jin, C. Mordasini, Compositional imprints in density-distance-time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation. ApJ 853, 163, 23 pp. (2018). https://doi.org/10.3847/1538-4357/aa9f1e

  48. J.E. Owen, Y. Wu, The evaporation valley in the Kepler planets. ApJ 847, 29. 14 pp. (2017). https://doi.org/10.3847/1538-4357/aa890a

  49. I.A.G. Snellen, R.J. de Kok, E.J.W. de Mooij, S. Albrecht, The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010). https://doi.org/10.1038/nature09111

    Article  ADS  Google Scholar 

  50. D. Ehrenreich, C. Lovis, R. Allart et al., Nightside condensation of iron in an ultrahot giant exoplanet. Nature 580, 597–601 (2020). https://doi.org/10.1038/s41586-020-2107-1

    Article  ADS  Google Scholar 

  51. H. Lammer, F. Selsis, I. Ribas et al., Atmospheric loss of exoplanets resulting from stellar x-ray and extreme-ultraviolet heating. ApJL 598, L121–L124 (2003)

    Article  ADS  Google Scholar 

  52. J.E. Owen, Atmospheric Escape and the Evolution of Close-In Exoplanets. Annu. Rev. Earth Planet. Sci. 47, 67–90 (2019). https://doi.org/10.1146/annurev-earth-053018-060246

    Article  ADS  Google Scholar 

  53. A. Lecavelier des Etangs, A. Vidal-Madjar, J.C. McConnel, G. Hébrard, Atmospheric escape from hot Jupiters. A&A L. 418, L1–L4 (2004). ArXiv:astro.ph/0440.3369 v1

    Google Scholar 

  54. D. Ehrenreich, V. Bourrier, P. J. Wheatley et al., A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459 (2015). https://doi.org/10.1038/nature14501

  55. V. Bourrier, A. Lecavelier des Etangs, D. Ehrenreich et al., An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b. A&A 591, 121 pp. 14 (2016). https://doi.org/10.1051/0004/6361/201628362

  56. R. Yelle, Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170, 167–179 (2004). https://www.sciencedirect.com/science/article/abs/pii/S0019103504000727

    Article  ADS  Google Scholar 

  57. V. Bourrier, Lecavelier des Etangs, D. Ehrenreich et al, Hubble PanCET: An extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470 b. A&A 620, A147 (2018). https://doi.org/10.151/0004-6361/201833675

  58. A. Vidal-Madjar, J.M. Désert, A. Lecavelier des Etangs, et al., Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. ApJ 604, L69 (2004)

    Google Scholar 

  59. L. Ben-Jaffel, G.E. Ballester, Transit of exomoon plasma tori: new diagnosis. ApJL 785, L30. 6pp. (2014). https://doi.org/10.1088/2041-8205/785/2/L30

  60. L. Fossati, C.A. Haswell, C.S. Froing et al., Metals in the exosphere of the highly irradiated planet WASP-12b. ApJL 714, L222–L224 (2010). https://doi.org/10.1088/2041-8205/714/2/L222

    Article  ADS  Google Scholar 

  61. A. García Muñoz, P.C. Schneider, Rapid escape of ultra-hot exoplanet atmospheres driven by Hydrogen Balmer absorption. ApJ 884 L43, 13 pp. (2019). https://doi.org/10.3847/2041-8213/ab498d

  62. M.L. Khodachenko, I.F. Shaikhislamov, Lammer, H et al. (2017) Lyα Absorption at Transits of HD 209458b: A Comparative Study of Various Mechanisms Under Different Conditions. ApJ vol. 847, 126. 13pp. https://doi.org/10.3847/1538-4357/aa88ad

  63. A. Wyttenbach, D. Ehrenreich, C. Lovis et al., Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph. A&A 577, A62, 13 pp (2015). https://doi.org/10.1051/0004-6361/201525729

  64. A. Oklopčić, C.M. Hirata, A New Window into Escaping Exoplanet Atmospheres: 10830 Å Line of Helium. ApJ L. 855, L11. 7 pp. (2018). https://doi.org/10.3847/2041-8213/aaada9

  65. J.J. Spake, D.K. Sing, T.M. Evans et al., Helium in the eroding atmosphere of an exoplanet. Nature 557, 68–70 (2018). https://doi.org/10.1038/s41586-018-0067-5

    Article  ADS  Google Scholar 

  66. R. Allart, V. Bourrier, C. Lovis et al., Spectral resolved helium absorption signature from the extended atmosphere of a warm Neptune-mass exoplanet. Science 362(6421), 1384–1387 (2018). https://doi.org/10.1126/science.aat5879

    Article  ADS  Google Scholar 

  67. L. Nortmann, E. Pallé, M. Salz et al., Ground-based detection of an extended helium atmosphere in the Saturn-mass exoplanet WASP-69b. Science 362(6421), 1388–1391 (2018). https://doi.org/10.1126/science.aat5348

    Article  ADS  Google Scholar 

  68. M. Salz, S. Czesla, P.C. Schneider et al., Detection of He I λ10830 Å absorption on HD 189733 b with CARMENES high-resolution transmission spectroscopy. A&A 620, A97. 13 pp. (2018). https://doi.org/10.1051/0004-6361/201833694

  69. F.J. Alonso-Floriano, I.A.G. Snellen, S. Czesla, et al., He I λ 10830 Å in the transmission spectrum of HD 209458 b. A&A 629, A110 (2019). https://doi.org/10.105170004-6361/201935979. arXiv:1907.13425

    Google Scholar 

  70. M. Mayor, M. Marmier, C. Lovis et al., The HARPS search for southern extra-solar planets XXXIV, in Occurrence, Mass Distribution and Orbital Properties of Super-Earths and Neptune-Mass Planets (2011). arXiv:1109.2497

  71. G.D. Mulders, C. Mordasini, I. Pascucci et al., The Exoplanet Population Observation Simulator. II. Population Synthesis in the Era of Kepler. ApJ 887(2), 157, 14 pp. (2019). https://iopscience.iop.org/article/10.3847/1538-4357/ab5187/pdf

  72. W. Zhu, S. Dong, Exoplanet statistics and theoretical implications. Ann. Rev. A&A 59, 291–336 (2021). https://doi.org/10.1146/annurev-astro-112420-020055

    Article  ADS  Google Scholar 

  73. K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the solar system. Nature 435, 459–461 (2005). https://doi.org/10.1038/nature03539

    Article  ADS  Google Scholar 

  74. K.J. Walsh, A. Morbidelli, S.N. Raymond et al., A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011). https://doi.org/10.1038/nature10201

    Article  ADS  Google Scholar 

  75. A.P. Boss, Proximity of Jupiter-Like Planets to Low Mass Stars. Science 267, 360–362 (1995). https://doi.org/10.1126/science.267.5196.360

    Article  ADS  Google Scholar 

  76. S.H. Dole, Computer simulation of the formation of planetary systems. Icarus 13, 494–508 (1970). https://doi.org/10.1016/0019-1035(70)90095-3

    Article  ADS  Google Scholar 

  77. C. Mordasini, H. Klahr, Y. Alibert, et al., Theory of planet formation. in Circumstellar Disks and Planets: Science Cases for the Second Generation VLTI Instrumentation, ed. by S. Wolf, Dec. 2010. arXiv:1012.5281.

  78. F.H. Shu, Self-similar collapse of isothermal spheres and star formation. ApJ 214, 488 (1977)

    Article  ADS  Google Scholar 

  79. M.R. Bate, On the diversity and statistical properties of protostellar discs. Mon. Not. R. Astron. Soc. 475(4), 5618–5658 (2018). https://doi.org/10.1093/mnras/sty169

    Article  ADS  Google Scholar 

  80. C.J. Lada, Formation: from OB association to protostars, in Proceedings Symposium of the International Astronomical Union, vol. 115 (Star Forming Region, 1987), pp. 1–18. https://doi.org/10.1017/S0074180900094766

  81. J.P. Williams, A. Cieza, Protoplanetary disks and their evolution. Ann. Rev. A&A 49, 67–117 (2011). https://doi.org/10.1146/annurev-astro-081710-102548

    Article  ADS  Google Scholar 

  82. S.M. Andrews, J. Huang, L.M. Perez et al., The disk substructures at high angular resolution project (DSHARP). I. Motivation, sample calibration, and overview. ApJL 869, L41. 15 pp. (2018). https://doi.org/10.3847/2041-8213/aaf741

  83. R. Lüst, Die Entwicklung einer um einen Zentralkörper rotierenden gasmasse. Z. Naturforschg 7A, 87–98 (1952). DOI: https://doi.org&10515/zna-1952-0118

    Google Scholar 

  84. D. Lynden-Bell, J. E. Pringle, The Evolution of viscous discs and the origin of the Nebular variables, Mon. Nat. R. Astr. Soc. 168, 603–637 (1974). DOI: https://doi.org/10.1093/mnras/168.3.603

  85. C. Baruteau, A. Crida, S.J. Paardekooper et al., Planet-Disk Interactions and Early Evolution of Planetary Systems. Protostars and Planets VI, vol. 667, 24 pp. (Arizona University Press, Tucson, 2014). arXiv:1312.4293

  86. T. Birnstiel, H. Klahr, B. Ercolano, A simple model for the evolution of the dust population in protoplanetary disks. A&A 539, 148, 12 pp. (2012). https://doi.org/10.1051/0004-6361/201118136

  87. H. Mizuno, Formation of the giant planets. Prog. Theoret. Phys. 64(2), 544–557 (1980). https://doi.org/10.1143/PTP.64.544

    Article  ADS  Google Scholar 

  88. F. Perri, A.G.W. Cameron, Hydrodynamic instability of the solar nebula in the presence of a planetary core. Icarus 22(4), 416–425 (1974). https://doi.org/10.1016/0019-1035(74)90074-8

    Article  ADS  Google Scholar 

  89. T. Birnstiel, C.P. Dullemond, F. Brauer, Gas-and dust evolution in protoplanetary disks. A&A 513, 79. 21(2010). https://doi.org/10.1051/0004-6361/200913731

  90. S. Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astronom. Soc. 180, 57–70 (1977a). https://doi.org/10.1093/MNRAS/180.2.57

  91. L. Testi, T. Birnstiel, L. Ricci et al., Dust Evolution in Protoplanetary Disks. Protostars and Planets VI, ed. by H. Beuther, R.H. Klessen, C.P. Dullemond, T. Henning T, vol. 914, pp. 339–361 (2014)

    Google Scholar 

  92. A.N. Youdin, J. Goodman, Streaming instabilities in protoplanetary disks. ApJ 620, 459–469 (2005). https://iopscience.iop.org/article/10.1086/426895

  93. A. Johansen, J.S. Oishi, M.M. Low et al., Rapid planetesimal formation in turbulent circumstellar discs. Nature 448, 1022–1025 (2007). https://doi.org/10.1038/nature06086

    Article  ADS  Google Scholar 

  94. V.S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets. (Keter Publishing House, 1972). ISBN:978–0–7065–1225–0

    Google Scholar 

  95. H. Tanaka, T. Takeuchi, W.R. Ward, Three-Dimensional Interaction between a Planet and an Isothermal Gaseous Disk. I. Corotation and Lindblad Torques and Planet Migration, ApJ 565, 1257–1274 (2002). https://iopscience.iop.org/article/ and https://iopscience.iop.org/article/10.1086/324713

  96. W.R. Ward, Survival of Planetary Systems. ApJ 482, L211–L214 (1997). https://iopscience.iop.org/article/https://iopscience.iop.org/article/10.1086/310701/fulltext/5046.text.html/

  97. F.S. Masset, A. Morbidelli, A. Crida, J. Ferreira, Disk Surface Density Transitios as Protoplanets Traps, ApJ 642, 478–487 (2006)

    Google Scholar 

  98. S.J. Paardekooper, C. Baruteau, W. Cley, A torque formula for non-isothermal Type I planetary migration-II. Effects of diffusion. Mon. Not. R. Astron. Soc, 410(1), 293–303 (2011). https://doi.org/10.1111/j.1365-2966.2010.17442.x

  99. K.M. Dittkrist, C. Mordasini, H. Klahr et al., Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. A&A 567, A121. 18 pp. (2014). https://doi.org/10.1051/0004-6361/201322506

  100. M. Ogihara, A. Morbidelli, T. Guillot, Suppression of type I migration by disk winds. A&A 584, L1 (2015). https://doi.org/10.1051/0004-636/201527117

    Article  ADS  Google Scholar 

  101. J.L. Lissauer, Planet formation. Annu. Rev. Astr. Astrophy. 11, 129–172 (1993)

    Article  ADS  Google Scholar 

  102. E.W. Thommes, M.J. Duncan, H.F. Levison, Oligarchic growth of giant planets. Icarus 161(2), 431–455 (2003). https://arxiv.org/pdf/astro-ph/0303269.pdf

  103. C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981). https://doi.org/10.1143/PTPS.70.35

    Article  ADS  Google Scholar 

  104. S. Weidenschilling, The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science, vol. 51, pp. 153–158. (Springer, 1977b). https://doi.org/10.1007/BF00642464

  105. Y. Alibert, C. Mordasini, W. Benz, C. Winisdoerffer, Models of giant planet formation with migration and disc evolution. A&A 434, 343–353 (2005). https://doi.org/10.1051/0004-6361:20042032

    Article  ADS  Google Scholar 

  106. J.B. Pollack, O. Hubickyj, P. Bodenheimer et al., Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996). https://doi.org/10.1006/icar.1996.0190

    Article  ADS  Google Scholar 

  107. M. Ikoma, K. Nakazawa, H. Emori, Formation of giant planets: Dependences on core accretion rate and grain opacity. ApJ 537, 1013–1025 (2000)

    Article  ADS  Google Scholar 

  108. P.H. Bodenheimer, P. Pollack, Calculations of the accretion and evolution of giant planets the effects of solid cores. Icarus 67, 391–408 (1986). https://doi.org/10.1016/0019-1035(86)90122-3

    Article  ADS  Google Scholar 

  109. K.E. Haisch, E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. ApJ 553, L153–L156 (2001)

    Article  ADS  Google Scholar 

  110. W. Benz, W.L. Slattery, A.G.W. Cameron, The origin of the moon and the single-impact hypothesis I. Icarus 66, 515–535 (1986). DOI: https://doi.org/10.1016/0019-1035(86)90088-6

    Article  ADS  Google Scholar 

  111. J. Laskar, Large scale chaos and the spacing of the inner planets. Astron. Astrophys. 317, L75–L78 (1997)

    ADS  Google Scholar 

  112. J. Laskar, Chaotic diffusion in the solar system. Icarus 196(1), 1–15 (2008). https://doi.org/10.1016/j.icarus.2008.02.017

    Article  ADS  Google Scholar 

  113. J.J. Fortney, M. Ikoma, Nettelmann et al., Self-consistent model atmospheres and the cooling of the solar system’s giant planets. ApJ 729, 32, 14 pp. (2011). https://doi.org/10.1088/0004-637X/729/1/32

  114. D.J. Bower, D. Kitzmann, A.S. Wolf et al., Linking the evolution of terrestrial interiors and an early outgassed atmosphere to astrophysical observations. A&A 631, A103, 18pp (2019). https://doi.org/10.1051/0004-6361/201935710

  115. C.W. Ormel, H.H. Klahr, The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. A&A 520, A43. 15 pp. (2010). https://doi.org/10.1051/0004-6361/201014903

  116. A. Johansen, M. Lambrechts, Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017). https://doi.org/10.1146/annurev-earth-063016-020226

    Article  ADS  Google Scholar 

  117. G.A.L. Coleman, From dust to planets—I. Planetesimal and embryo formation. Mon. Not. Royal Astron. Soc. 506, 3596–3614 (2021). DOI: https://doi.org/10.10937MNRAS/STAB1904

    Google Scholar 

  118. C. Marois, B. Macintosh, T. Barman et al., Direct imaging of multiple planets orbiting the star HR8799. Science 322(5906), 1348–1352 (2008). https://doi.org/10.1126/science.1166585

    Article  ADS  Google Scholar 

  119. A.P. Boss, Giant planet formation by gravitational instability. Science 276(5320), 1836–1839 (1997). https://doi.org/10.1126/science.276.5320.1836

    Article  ADS  Google Scholar 

  120. A.G.W. Cameron, Physics of the primitive solar accretion disk. Moon Planets 18, 5–40 (Springer, 1978). https://doi.org/10.1007/BF00896696

  121. G.P. Kuiper, On the origin of the solar system. PNAS 37(4), 1–14 (1951) and PNAS 37(4):233. https://doi.org/10.1073/pnas.37.1.1

  122. L. Mayer, G. Lufkin, T. Quinn, J. Wadsley, Fragmentation of gravitational unstable gaseous protoplanetary disks with radiative transfer. AsJ 661, L77–L80 (2007)

    Google Scholar 

  123. R. Helled, P. Bodenheimer, The effects of metallicity and grain growth and settling on the early evolution of gaseous protoplanets. Icarus 211, 939–947 (2011). https://doi.org/10.1016/j.icarus.2010.09.024

    Article  ADS  Google Scholar 

  124. O. Schib, C. Mordasini, N. Wenger et al., The influence of infall on the properties of protoplanetary discs. Statistics of masses, sizes, lifetimes, and fragmentation. A&A 645, A43 (2021). https://doi.org/10.1051/0004-6361/202039154

  125. K.M. Kratter, R.A. Murray-Clay, A.N. Youdin, The runts of the litter: why planets formed through gravitational instability can only be failed binary stars. ApJ 710, 1375–1386 (2010)

    Article  ADS  Google Scholar 

  126. S. Ida, D.N.C. Lin, Toward a deterministic model of planetary formation. II. the formation and retention of gas giant planets around stars with a range of metallicities. ApJ 616, 567–572 (2004)

    Article  ADS  Google Scholar 

  127. Y. Alibert, C. Mordasini , W. Benz, Migration and giant planet formation. A&A, 417(1) L25–L28 (2004). DOI: https://doi.org/10.1051/0004-6361:20040053

  128. A. Emsenhuber, C. Mordasini, R. Burn et al., The New Generation Planetary Population Synthesis (NGPPS). II. Planetary population of solar-like stars and overview of statistical results. A&A 656, A70, 38 pp. (2021b). https://doi.org/10.1051/0004-6361/202038863

  129. C. Mordasini, P. Molliere, K.M. Dittkrist et al., Global models of planet formation and evolution. Int. J. Astrobiol. 14(2): Special Issue: Exoplanets, 201–233 (2015). Published online by Cambridge University Press. https://doi.org/10.1017/S1473550414000263

  130. A. Emsenhuber, C. Mordasini, R. Burn et al., The new generation planetary population synthesis (NGPPS). I. Bern global model of planet formation and evolution, model tests, and emerging planetary systems. A&A, 656, A69, 44pp (2021a). htpps://doi.org/https://doi.org/10.1051/0004-6361/202038553

  131. Y. Alibert, F. Carron, A. Fortier et al., Theoretical models of planetary system formation: mass versus semi-major axis. A&A 558, 109, 13 pp. (2013). https://doi.org/10.1051/0004-6361/201321690

  132. C. Mordasini, Y. Alibert, W. Benz et al., Extrasolar planet population synthesis. II. Statistical comparison with observations. A&A 501(3), 1161–1184 (2009). https://doi.org/10.1051/0004-6361/200810697

  133. C. Mordasini, Planetary population synthesis. Handbook of exoplanets, 2425–2474, in Handbook of Exoplanets, ed. by H. Degg, J. Belmonte (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-55333-7_143 Print ISBN:978–3–319–55332–0 online ISBN: 978–3–319–55333–7 and arXiv:1804.01532v1

  134. S.M. Andrews, D.J. Wilner, A.M. Hughes et al., Protoplanetary disk structures in ophiuchus. II. ApJ 723, 1241–1254 (2010). https://doi.org/10.1088/0004-637X/723/2/1241

  135. W. Benz, S. Ida, Y. Alibert et al., Planet population synthesis. Protostars and Planets VI, ed. by H. Beuther et al. (University of Arizona Press, Tucson, 2014), 691–713. https://doi.org/10.2458/azu_uapress_9780816531240-ch030. arXiv:1402.7086

  136. O. Voelkel, H. Klahr, C. Mordasini, A. Emsenhuber, On the multiple Generations of Planetary Embryos. (2022). arXiv:2202.01500v1 https://doi.org/10.1088/0004-637X/723/2/1241. Exploring multiple generations of planetary embryos. published by EDP Science https://doi.org/10.105/0004/6361/202141830

  137. N.J. Turner, S. Fromang, C. Gammie, Transport and accretion in planet-forming disks. Protostars and Planets VI, 411–432, ed. by H. Beuter et al. (University of Arizona, Tucson, 2014). https://doi.org/10.2458/azu_uapress_9780816531240-ch018

  138. M. Keppler, M. Benisty, A. Müller et al., Discovery of a planetary-mass companion within the gap of the transition disk around PDS70. A&A, 617, A44 (2018). DOI: https://doi.org/10.1051/0004-6361/201832957

  139. J.F. Kasting, D.P. Whitmire, R.T. Reynolds, Habitable zones around main sequence stars. Icarus 101(1), 108–128 (1993). https://doi.org/10.1006/icar.1993.1010

    Article  ADS  Google Scholar 

  140. G. Anglada-Escudé, P.J. Amado, J. Barnes et al., A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536(437), 440 (2016). https://doi.org/10.1038/nature19106

    Article  ADS  Google Scholar 

  141. V.S. Meadows, Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology vol. 17, n 10 (Mary Ann Liebert, Inc. Publishers, 2017). https://doi.org/10.1089/ast.2016.1578

  142. C.H.L. Patty, J.G. Kühn, P.H. Lambrev et al., Biosignatures of the Earth. I. Airborne spectropolarimetric detection of photosynthetic life. A&A 651, A68. 7pp. (2021). https://doi.org/10.1051/0004-6361/202140845

  143. T.J. Fauchez, M. Turbet, G.L. Villanueva et al., Impact of clouds and hazes on the simulated JWST transmission spectra of habitable zone planets in the TRAPPIST-1 system. ApJ 887, 194. 27 pp. (2019). https://doi.org/10.3847/1538-4357/ab5862

  144. M. Turbet, E. Bolmont, V. Bourrier et al., A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System. Space Science Reviews, 216, 100 (2020). DOI: https://doi.org/10.1007/s11214-020-00719-1

  145. I. Snellen, R. de Kok, J.L. Birkby et al., Combining high-dispersion spectroscopy with high contrast imaging: probing rocky planets around our nearest neighbors. A&A 576, A59 (2015). https://doi.org/10.1051/0004-6361/201425018

    Article  ADS  Google Scholar 

  146. C. Lovis, I. Snellen, D. Mouillet et al., Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph. A&A 599, A16, 16 pp. (2017). https://doi.org/10.1051/0004-6361/201629682

  147. A. Segura, L.M. Walkowicz, V. Meadows et al., The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M Dwarf. Astrobiology 10(7), 751–771 (2010). https://doi.org/10.1089/ast.2009.0376

    Article  ADS  Google Scholar 

  148. S.P. Quanz, M. Ottiger, E. Fontanet et al., Large Interferometer for Exoplanets (LIFE): I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission A&A 664, A21, 22pp (2022). https://doi.org/10.1051/0004-6361/202140366 . (Published online 09 August 2022)

  149. A. Romero-Wolf, G. Bryden, S. Seager et al., Starshade rendezvous: exoplanet sensitivity and observing strategy. J. Astron. Telesc. Inst. Syst. 7(2), 021210 (2021). https://doi.org/10.1117/1.JATIS.7.2.021210

Download references

Acknowledgements

This work has been carried out in the frame of the National Centre for Competence in Research PlanetS supported by the Swiss National Science Foundation (SNSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Mayor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayor, M., Bolmont, E., Bourrier, V., Ehrenreich, D., Mordasini, C. (2022). Other Worlds in the Cosmos: From Philosophy to Scientific Reality. In: Streit-Bianchi, M., Catapano, P., Galbiati, C., Magnani, E. (eds) Advances in Cosmology. Springer, Cham. https://doi.org/10.1007/978-3-031-05625-3_17

Download citation

Publish with us

Policies and ethics