Skip to main content

BASE—Testing Fundamental Symmetries by High Precision Comparisons of the Properties of Antiprotons and Protons

  • Chapter
  • First Online:
Advances in Cosmology
  • 554 Accesses

Abstract

This chapter reviews the experimental activities of the BASE collaboration at CERN [1], which operates advanced Penning trap systems to compare the fundamental properties of single protons and antiprotons with high precision [2,3,4]. Such measurements provide stringent tests of charge, parity, time (CPT) reversal invariance, which is the most fundamental symmetry in the standard model of particle physics [5]. CPT invariance has been tested with high sensitivity in very different sectors [6], and so far no indications for a violation have been found. In contrast, the non-observation of primordial antimatter and the matter excess in our Universe are a tremendous challenge for the Standard Model, since the tiny amount of CP-violation contained in the Standard Model is insufficient to reproduce the matter content by more than eight orders of magnitude [7]. Other activities of the BASE collaboration include contributions to searches for axions and axion like particles, light spinless bosons (\(m_a \ll 1~\text {eV}/c^2\)) originally proposed to resolve the strong CP problem of quantum chromodynamics. In recent work BASE investigated asymmetric couplings of dark-matter particles to fermions and antifermions [8], and used superconducting resonant single particle detection circuits in strong magnetic fields, to set, in a narrow mass range, competitive limits on the coupling of ALPs to photons [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Smorra, K. Blaum, L. Bojtar, M. Borchert, K. Franke, T. Higuchi, N. Leefer, H. Nagahama, Y. Matsuda, A. Mooser, M. Niemann, C. Ospelkaus, W. Quint, G. Schneider, S. Sellner, T. Tanaka, S.V. Gorp, J. Walz, Y. Yamazaki, S. Ulmer, Europ. Phys. J. Special Topics 224(16), 3055 (2015)

    Google Scholar 

  2. S. Ulmer, C. Smorra, A. Mooser, K. Franke, H. Nagahama, G. Schneider, T. Higuchi, S. Van Gorp, K. Blaum, Y. Matsuda et al., Nature 524(7564), 196 (2015)

    Google Scholar 

  3. G. Schneider, A. Mooser, M. Bohman, N. Schön, J. Harrington, T. Higuchi, H. Nagahama, S. Sellner, C. Smorra, K. Blaum et al., Science 358(6366), 1081 (2017)

    Google Scholar 

  4. C. Smorra, S. Sellner, M.J. Borchert, J.A. Harrington, T. Higuchi, H. Nagahama, T. Tanaka, A. Mooser, G. Schneider, M. Bohman et al., Nature 550(7676), 371 (2017)

    Google Scholar 

  5. R. Lehnert, Symmetry 8(11), 114 (2016)

    Google Scholar 

  6. V.A. Kosteleckỳ, N. Russell, Rev. Modern Phys. 83(1), 11 (2011)

    Google Scholar 

  7. M. Dine, A. Kusenko, Rev. Modern Phys. 76(1), 1 (2003)

    Google Scholar 

  8. C. Smorra, Y.V. Stadnik, P.E. Blessing, M. Bohman, M.J. Borchert, J.A. Devlin, S. Erlewein, J.A. Harrington, T. Higuchi, A. Mooser, G. Schneider, M. Wiesinger, E. Wursten, K. Blaum, Y. Matsuda, C. Ospelkaus, W. Quint, J. Walz, Y. Yamazaki, D. Budker, S. Ulmer, Nature 575(7782), 310 (2019). https://doi.org/10.1038/s41586-019-1727-9

  9. J.A. Devlin, M.J. Borchert, S. Erlewein, M. Fleck, J.A. Harrington, B. Latacz, J. Warncke, E. Wursten, M.A. Bohman, A.H. Mooser et al., Phys. Rev. Lett. 126(4), 041301 (2021)

    Google Scholar 

  10. M. Safronova, D. Budker, D. DeMille, D.F.J. Kimball, A. Derevianko, C.W. Clark, Rev. Modern Phys. 90(2), 025008 (2018)

    Google Scholar 

  11. G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S.A. Khalek, A.A. Abdelalim, R. Aben, B. Abi, M. Abolins, O. AbouZeid et al., Phys. Lett. B 716(1), 1 (2012)

    Google Scholar 

  12. S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl et al., Phy. Lett. B 710(1), 26 (2012)

    Google Scholar 

  13. P.W. Higgs, Phys. Rev. Lett. 13(16), 508 (1964)

    Google Scholar 

  14. F. Englert, R. Brout, Phys. Rev. Lett. 13(9), 321 (1964)

    Google Scholar 

  15. S. Weinberg, Phys. Rev. Lett. 19(21), 1264 (1967)

    Google Scholar 

  16. T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Phys. Rev. Lett. 99(11), 110406 (2007)

    Google Scholar 

  17. D. Hanneke, S. Fogwell, G. Gabrielse, Phys. Rev. Lett. 100(12), 120801 (2008)

    Google Scholar 

  18. L. Morel, Z. Yao, P. Cladé, S. Guellati-Khélifa, Nature 588(7836), 61 (2020)

    Google Scholar 

  19. R.H. Parker, C. Yu, W. Zhong, B. Estey, H. Müller, Science 360(6385), 191 (2018)

    Google Scholar 

  20. J.A. Frieman, M.S. Turner, D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008)

    Google Scholar 

  21. G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405(5–6), 279 (2005)

    Google Scholar 

  22. P.D. Group, et al., Chin. Phys. C 40(10), 100001 (2016)

    Google Scholar 

  23. A.D. Sakharov, in In The Intermissions... Collected Works on Research into the Essentials of Theoretical Physics in Russian Federal Nuclear Center, Arzamas-16 (World Scientific, 1998), pp. 84–87

    Google Scholar 

  24. G. Lüders, Ann. Phys. 2(1), 1 (1957)

    Google Scholar 

  25. R. Jost, Acta 30, 409 (1957)

    Google Scholar 

  26. D. Colladay, V.A. Kosteleckỳ, Phys. Rev. D 55(11), 6760 (1997)

    Google Scholar 

  27. R. Bluhm, in Special Relativity (Springer, Berlin, 2006), pp. 191–226

    Google Scholar 

  28. V.A. Kosteleckỳ, S. Samuel, Phys. Rev. D 39(2), 683 (1989)

    Google Scholar 

  29. M. Ahmadi, B. Alves, C. Baker, W. Bertsche, E. Butler, A. Capra, C. Carruth, C. Cesar, M. Charlton, S. Cohen et al., Nature 548(7665), 66 (2017)

    Google Scholar 

  30. E. Widmann, M. Diermaier, B. Juhász, C. Malbrunot, O. Massiczek, C. Sauerzopf, K. Suzuki, B. Wünschek, J. Zmeskal, S. Federmann et al., Hyperfine Interact. 215(1), 1 (2013)

    Google Scholar 

  31. S. Maury, W. Oelert, W. Bartmann, P. Belochitskii, H. Breuker, F. Butin, C. Carli, T. Eriksson, S. Pasinelli, G. Tranquille, Hyperfine Interact. 229(1), 105 (2014)

    Google Scholar 

  32. M. Doser, et al., in J. Phys.: Conf. Ser., vol. 199 (IOP Publishing, 2010), p. 012009

    Google Scholar 

  33. M. Fujiwara, G. Andresen, W. Bertsche, P. Bowe, C. Bray, E. Butler, C. Cesar, S. Chapman, M. Charlton, J. Fajans, et al., in AIP Conference Proceedings, vol. 1037 (American Institute of Physics, 2008), pp. 208–220

    Google Scholar 

  34. E. Widmann, C. Amsler, S.A. Cuendis, H. Breuker, M. Diermaier, P. Dupré, C. Evans, M. Fleck, A. Gligorova, H. Higaki et al., Hyperfine Interact. 240(1), 1 (2019)

    Google Scholar 

  35. P. Perez, Y. Sacquin, Class. Quantum Grav. 29(18), 184008 (2012)

    Google Scholar 

  36. T. Aumann, J. Grenard, S. Naimi, D. Rossi, Y. Ono, H. De Gersem, S. Sels, E. Siesling, A. Schmidt, D. Calvet et al., Puma: antiprotons and radioactive nuclei. Technical Report (2019)

    Google Scholar 

  37. N. Kuroda, S. Ulmer, D. Murtagh, S. Van Gorp, Y. Nagata, M. Diermaier, S. Federmann, M. Leali, C. Malbrunot, V. Mascagna et al., Nat. Commun. 5(1), 1 (2014)

    Google Scholar 

  38. M. Diermaier, C. Jepsen, B. Kolbinger, C. Malbrunot, O. Massiczek, C. Sauerzopf, M. Simon, J. Zmeskal, E. Widmann, Nat. Commun. 8(1), 1 (2017)

    Google Scholar 

  39. M. Hori, H. Aghai-Khozani, A. Sótér, D. Barna, A. Dax, R. Hayano, T. Kobayashi, Y. Murakami, K. Todoroki, H. Yamada et al., Science 354(6312), 610 (2016)

    Google Scholar 

  40. S. Alighanbari, G. Giri, F.L. Constantin, V. Korobov, S. Schiller, Nature 581(7807), 152 (2020)

    Google Scholar 

  41. F. Heiße, F. Köhler-Langes, S. Rau, J. Hou, S. Junck, A. Kracke, A. Mooser, W. Quint, S. Ulmer, G. Werth et al., Phys. Rev. Lett. 119(3), 033001 (2017)

    Google Scholar 

  42. G. Andresen, M. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P.D. Bowe, E. Butler, C. Cesar, S. Chapman, M. Charlton, A. Deller et al., Nature 468(7324), 673 (2010)

    Google Scholar 

  43. M. Ahmadi, B. Alves, C. Baker, W. Bertsche, E. Butler, A. Capra, C. Carruth, C. Cesar, M. Charlton, S. Cohen et al., Nat. Commun. 8(1), 1 (2017)

    Google Scholar 

  44. M. Ahmadi, M. Baquero-Ruiz, W. Bertsche, E. Butler, A. Capra, C. Carruth, C. Cesar, M. Charlton, A. Charman, S. Eriksson et al., Nature 529(7586), 373 (2016)

    Google Scholar 

  45. A. Charman, Nat. Commun. 4(1), 1 (2013)

    Google Scholar 

  46. M. Ahmadi, B.X.R. Alves, C.J. Baker, W. Bertsche, A. Capra, C. Carruth, C.L. Cesar, M. Charlton, S. Cohen, R. Collister et al., Nature 557(7703), 71 (2018)

    Google Scholar 

  47. C. Baker, W. Bertsche, A. Capra, C. Carruth, C. Cesar, M. Charlton, A. Christensen, R. Collister, A.C. Mathad, S. Eriksson et al., Nature 592(7852), 35 (2021)

    Google Scholar 

  48. C.G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, T. Udem et al., Phys. Rev. Lett. 107(20), 203001 (2011). https://doi.org/10.1103/PhysRevLett.107.203001

  49. V.A. Kosteleckỳ, A.J. Vargas, Phys. Rev. D 92(5), 056002 (2015)

    Google Scholar 

  50. B. Schwingenheuer, R.A. Briere, A.R. Barker, E. Cheu, L.K. Gibbons, D.A. Harris, G. Makoff, K.S. McFarland, A. Roodman, Y.W. Wah et al., Phys. Rev. Lett. 74(22), 4376 (1995)

    Google Scholar 

  51. R.S. Van Dyck Jr, P.B. Schwinberg, H.G. Dehmelt, Phys. Rev. Lett. 59(1), 26 (1987)

    Google Scholar 

  52. B. Abi, T. Albahri, S. Al-Kilani, D. Allspach, L. Alonzi, A. Anastasi, A. Anisenkov, F. Azfar, K. Badgley, S. Baeßler et al., Phys. Rev. Lett. 126(14), 141801 (2021)

    Google Scholar 

  53. S. Borsanyi, Z. Fodor, J. Guenther, K.H. Kampert, S.D. Katz, T. Kawanai, T.G. Kovacs, S.W. Mages, A. Pasztor, F. Pittler, J. Redondo, A. Ringwald, K.K. Szabo, Nature 539(7627), 69 (2016). https://doi.org/10.1038/nature20115

  54. A. Keshavarzi, K.S. Khaw, T. Yoshioka, (2021). arXiv:2106.06723

  55. G. Gabrielse, A. Khabbaz, D.S. Hall, C. Heimann, H. Kalinowsky, W. Jhe, Phys. Rev. Lett. 82(16), 3198 (1999)

    Google Scholar 

  56. L.S. Brown, G. Gabrielse, Rev. Modern Phys. 58(1), 233 (1986)

    Google Scholar 

  57. S. Ulmer, H. Kracke, K. Blaum, S. Kreim, A. Mooser, W. Quint, C.C. Rodegheri, J. Walz, Rev. Sci. Inst. 80(12), 123302 (2009)

    Google Scholar 

  58. H. Nagahama, G. Schneider, A. Mooser, C. Smorra, S. Sellner, J. Harrington, T. Higuchi, M. Borchert, T. Tanaka, M. Besirli, K. Blaum, Y. Matsuda, C. Ospelkaus, W. Quint, J. Walz, Y. Yamazaki, S. Ulmer, Rev. Scie. Inst. 87(11), 113305 (2016)

    Google Scholar 

  59. C. Smorra, A. Mooser, M. Besirli, M. Bohman, M.J. Borchert, J. Harrington, T. Higuchi, H. Nagahama, G.L. Schneider, S. Sellner, T. Tanaka, K. Blaum, Y. Matsuda, C. Ospelkaus, W. Quint, J. Walz, Y. Yamazaki, S. Ulmer, Phys. Lett., Sect. B: Nucl. Element. Particle High-Energy. Phys. 769, 1 (2017). https://doi.org/10.1016/j.physletb.2017.03.024

  60. S. Sturm, F. Köhler, J. Zatorski, A. Wagner, Z. Harman, G. Werth, W. Quint, C.H. Keitel, K. Blaum, Nature 506(7489), 467 (2014)

    Google Scholar 

  61. C.d.C. Rodegheri, K. Blaum, H. Kracke, S. Kreim, A. Mooser, W. Quint, S. Ulmer, J. Walz, New J. Phys. 14(6), 063011 (2012)

    Google Scholar 

  62. S. Ulmer, C.C. Rodegheri, K. Blaum, H. Kracke, A. Mooser, W. Quint, J. Walz, Phys. Rev. Lett. 106(25), 253001 (2011)

    Google Scholar 

  63. A. Mooser, S. Ulmer, K. Blaum, K. Franke, H. Kracke, C. Leiteritz, W. Quint, C.C. Rodegheri, C. Smorra, J. Walz, Nature 509(7502), 596 (2014)

    Google Scholar 

  64. S. Sellner, M. Besirli, M. Bohman, M.J. Borchert, J. Harrington, T. Higuchi, A. Mooser, H. Nagahama, G. Schneider, C. Smorra et al., New J. Phys. 19(8), 083023 (2017)

    Google Scholar 

  65. C. Smorra, A. Mooser, K. Franke, H. Nagahama, G. Schneider, T. Higuchi, S.V. Gorp, K. Blaum, Y. Matsuda, W. Quint et al., Int. J. Mass Spectrom. 389, 10 (2015)

    Google Scholar 

  66. K. Abe, Y. Haga, Y. Hayato, M. Ikeda, K. Iyogi, J. Kameda, Y. Kishimoto, M. Miura, S. Moriyama, M. Nakahata et al., Phys. Rev. D 95(1), 012004 (2017)

    Google Scholar 

  67. S. Geer, J. Marriner, M. Martens, R. Ray, J. Streets, W. Wester, M. Hu, G. Snow, T. Armstrong, C. Buchanan et al., Phys. Rev. Lett. 84(4), 590 (2000)

    Google Scholar 

  68. K. Babu, J.C. Pati, F. Wilczek, Phys. Lett. B 423(3–4), 337 (1998)

    Google Scholar 

  69. R.J. Hughes, Phys. Rev. D 41(8), 2367 (1990)

    Google Scholar 

  70. R.J. Hughes, M.H. Holzscheiter, Phys. Rev. Lett. 66(7), 854 (1991)

    Google Scholar 

  71. O.W. Greenberg, Phys. Rev. Lett. 89(23), 231602 (2002)

    Google Scholar 

  72. G. Chardin, G. Manfredi, Hyperfine Interact. 239(1), 1 (2018)

    Google Scholar 

  73. M. Charlton, S. Eriksson, G.M. Shore, Antihydrogen and Fundamental Physics (Springer, Berlin, 2020)

    Google Scholar 

  74. J.K. Thompson, S. Rainville, D.E. Pritchard, Nature 430(6995), 58 (2004)

    Google Scholar 

  75. K.R. Lykke, K.K. Murray, W.C. Lineberger, Phys. Rev. A 43(11), 6104 (1991)

    Google Scholar 

  76. S. Rainville, J.K. Thompson, E.G. Myers, J.M. Brown, M.S. Dewey, E.G. Kessler, R.D. Deslattes, H.G. Börner, M. Jentschel, P. Mutti et al., Nature 438(7071), 1096 (2005)

    Google Scholar 

  77. M. Charlton, S. Eriksson, G. Shore, Testing fundamental physics in antihydrogen experiments (2020). arXiv:2002.09348

  78. I. Kenyon, Phys. Lett. B 237(2), 274 (1990)

    Google Scholar 

  79. C. Tchernin, E.T. Lau, S. Stapelberg, D. Hug, M. Bartelmann, Astron. Astrophys. 644, A126 (2020)

    Google Scholar 

  80. W.A. Bertsche, Philosoph. Trans. R. Soc. A: Math. Phys. Eng. Sci. 376(2116), 20170265 (2018)

    Google Scholar 

  81. P. Scampoli, J. Storey, Modern Phys. Lett. A 29(17), 1430017 (2014)

    Google Scholar 

  82. R. Bluhm, V.A. Kosteleckỳ, N. Russell, Phys. Rev. D 57(7), 3932 (1998)

    Google Scholar 

  83. Y. Ding, M.F. Rawnak, Phys. Rev. D 102(5), 056009 (2020)

    Google Scholar 

  84. M. Borchert, P. Blessing, J. Devlin, J. Harrington, T. Higuchi, J. Morgner, C. Smorra, E. Wursten, M. Bohman, M. Wiesinger et al., Phys. Rev. Lett. 122(4), 043201 (2019)

    Google Scholar 

  85. H. Nagahama, C. Smorra, S. Sellner, J. Harrington, T. Higuchi, M. Borchert, T. Tanaka, M. Besirli, A. Mooser, G. Schneider et al., Nat. Commun. 8(1), 1 (2017)

    Google Scholar 

  86. H. Häffner, T. Beier, S. Djekić, N. Hermanspahn, H.J. Kluge, W. Quint, S. Stahl, J. Verdú, T. Valenzuela, G. Werth, Europ. Phys. J.D-Atomic. Mol. Opt. Plasma Phys. 22(2), 163 (2003)

    Google Scholar 

  87. J. DiSciacca, M. Marshall, K. Marable, G. Gabrielse, S. Ettenauer, E. Tardiff, R. Kalra, D.W. Fitzakerley, M.C. George, E.A. Hessels et al., Phys. Rev. Lett. 110(13), 130801 (2013)

    Google Scholar 

  88. P.F. Winkler, D. Kleppner, T. Myint, F.G. Walther, Phys. Rev. A 5(1), 83 (1972)

    Google Scholar 

  89. Y. Stadnik, B. Roberts, V. Flambaum, Phys. Rev. D 90(4), 045035 (2014)

    Google Scholar 

  90. Y.V. Stadnik, V.V. Flambaum, (2018). arXiv:1806.03115

  91. C. Abel, N.J. Ayres, G. Ban, G. Bison, K. Bodek, V. Bondar, M. Daum, M. Fairbairn, V.V. Flambaum, P. Geltenbort et al., Phys. Rev. X 7(4), 041034 (2017)

    Google Scholar 

  92. Y. Ding, V.A. Kosteleckỳ, Phys. Rev. D 94(5), 056008 (2016)

    Google Scholar 

  93. P. Sikivie, Phys. Rev. Lett. 51(16), 1415 (1983)

    Google Scholar 

  94. I.G. Irastorza, J. Redondo, Progr. Particle Nucl. Phys. 102, 89 (2018). https://doi.org/10.1016/j.ppnp.2018.05.003

  95. P. Sikivie, N. Sullivan, D.B. Tanner, Phys. Rev. Lett. 112(13), 131301 (2014)

    Google Scholar 

  96. S. Ulmer, K. Blaum, H. Kracke, A. Mooser, W. Quint, C.C. Rodegheri, J. Walz, Nucl. Inst. Methods Phys. Res. Sect. A 705, 55 (2013). https://doi.org/10.1016/j.nima.2012.12.071

  97. M. Bohman, A. Mooser, G. Schneider, N. Schön, M. Wiesinger, J. Harrington, T. Higuchi, H. Nagahama, C. Smorra, S. Sellner et al., J. Modern Optics 65(5–6), 568 (2018)

    Google Scholar 

  98. M. Bohman, V. Grunhofer, C. Smorra, M. Wiesinger, C. Will, M. Borchert, J. Devlin, S. Erlewein, M. Fleck, S. Gavranovic et al., Nature 596(7873), 514 (2021)

    Google Scholar 

  99. C. Will, M. Bohman, T. Driscoll, M. Wiesinger, F. Abbass, M. Borchert, J. Devlin, S. Erlewein, M. Fleck, B. Latacz et al. (2021). arXiv:2112.04818

  100. J.M. Cornejo, R. Lehnert, M. Niemann, J. Mielke, T. Meiners, A. Bautista-Salvador, M. Schulte, D. Nitzschke, M.J. Borchert, K. Hammerer et al. (2021). arXiv:2106.06252

Download references

Acknowledgements

I acknowledge technical support by CERN, especially the Antiproton Decelerator operation group, CERN’s cryolab team and engineering department, and all other CERN groups which provide support to Antiproton Decelerator experiments. In addition I acknowledge financial support by RIKEN, the RIKEN EEE pioneering project funding, the Max-Planck Society, and the Max-Planck, RIKEN, PTB-Center for Time, Constants, and Fundamental Symmetries (C-TCFS). I would like to express my deepest gratitude towards the entire BASE team for all the dedicated work and creativity put into the project. In particular I would like to thank Klaus Blaum, collaborator at BASE and director of the Max Planck Institute for Nuclear Physis, Heidelberg, and Yasunorik Yamazaki, Chief Scientist at RIKEN, for their invaluable support, friendship and encouragement. I thank Christian Ospelkaus for support, friendship, trustful collaboration and his future visions, and in particular Christian Smorra for his dedicated contributions to BASE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Ulmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ulmer, S. (2022). BASE—Testing Fundamental Symmetries by High Precision Comparisons of the Properties of Antiprotons and Protons. In: Streit-Bianchi, M., Catapano, P., Galbiati, C., Magnani, E. (eds) Advances in Cosmology. Springer, Cham. https://doi.org/10.1007/978-3-031-05625-3_10

Download citation

Publish with us

Policies and ethics