Skip to main content

Radioguided Surgery: New Applications, Approaches, and Strategies

  • Reference work entry
  • First Online:
Nuclear Oncology

Abstract

The dynamic concept Guided intraOperative Scintigraphic Tumour Targeting (GOSTT) was introduced a few years ago to encompass all developments in the area of interventional nuclear medicine. This concept includes the use of both preoperative imaging required for providing roadmaps for radioguided surgery and specific intraoperative detection modalities to accomplish surgical target resection. The subsequent incorporation of SPECT/CT and PET/CT in the last two decades has optimized the generation of specific roadmaps introducing three-dimensional information to guide surgical procedures. On the other side, new intraoperative imaging devices like portable gamma cameras have been added to standard detection modalities such as gamma probes. More recently, the development of hybrid tracers integrating radioactivity and fluorescence in one signature, has enabled the use of near-infrared cameras in addition to gamma guidance in the operating room. All these advances have led to the extension of radioguided sentinel lymph node biopsy procedures from the classical applications in cutaneous melanoma and breast cancer to other fields like oral cavity, gynecologic, gastrointestinal, and urological malignancies. At the same time these new technological tools have gradually facilitated not only more sophisticated open surgery applications but also radioguidance for robot-assisted surgical procedures. At present, four GOSTT working approaches can be delineated in relation to radiotracer administration: local administration with tracer migration for subsequent sentinel lymph node surgery, intralesional administration without tracer migration for occult lesion localization and resection, intralesional administration with tracer migration for combined occult lesion localization and sentinel lymph node biopsy, and systemic administration to enable excisional biopsy of primary lesions and recurrences as well as isolated regional and distant metastases. The latter field has a huge potential due to the continuous introduction of new PET and SPECT tracers. Novel modalities like luminescence detection and tracked image-guided navigation will further reinforce the role of GOSTT and interventional nuclear medicine. Finally, new strategies based on the consecutive use of PET/CT and radioguided procedures have gained ground by delineating specific approaches for the management of cancer patients at high risk of metastatic dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morton DL, Wen DR, Wong JH, Economou JS, Cagle LA, Storm FK, Foshag LJ, Cochran AJ. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127:392–9.

    Article  CAS  PubMed  Google Scholar 

  2. Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery – a comprehensive team approach. New York: Springer; 2008.

    Google Scholar 

  3. Zaknun JJ, Giammarile F, Valdés Olmos RA, Vidal-Sicart S, Mariani G. Changing paradigms in radioguided surgery and intraoperative imaging: the GOSTT concept. Eur J Nucl Med Mol Imaging. 2012;39:1–3.

    Article  PubMed  Google Scholar 

  4. Valdés Olmos RA, Vidal-Sicart S, Giammarile F, Zaknun JJ, van Leeuwen FWB, Mariani G. The GOSTT concept and hybrid mixed/virtual/augmented reality environment radioguided surgery. Q J Nucl Med Mol Imaging. 2014;58:207–15.

    PubMed  Google Scholar 

  5. International Atomic Energy Agency (IAEA), editor. Guided Intraoperative Scintigraphic Tumour Targeting (GOSTT): implementing advanced hybrid molecular imaging and non-imaging probes for advanced cancer management. Vienna: IAEA; 2014.

    Google Scholar 

  6. Valdés Olmos RA, Vidal-Sicart S, Manca G, Mariani G, León-Ramírez LF, Rubello D, Giammarile F. Advances in radioguided surgery in oncology. Q J Nucl Med Mol Imaging. 2017;61:247–70.

    Article  PubMed  Google Scholar 

  7. Skanjeti A, Dhomps A, Paschetta C, Tordo J, Delgado Bolton RC, Giammarile F. Lymphoscintigraphy for Sentinel Node Mapping in Head and Neck Cancer. Semin Nucl Med. 2021;51:39–49.

    Article  PubMed  Google Scholar 

  8. Valdés Olmos RA, Rietbergen DDD, Rubello D, Pereira Arias-Bouda LM, Collarino A, Colletti PM, et al. Sentinel node imaging and radioguided surgery in the era of SPECT/CT and PET/CT: toward new interventional nuclear medicine strategies. Clin Nucl Med. 2020;45:771–7.

    Article  PubMed  Google Scholar 

  9. Cabañas RM. An approach for the treatment of penile carcinoma. Cancer. 1977;39:456–66.

    Article  PubMed  Google Scholar 

  10. Morton DL, Thompson JF, Essner R, Elashoff R, Stern SL, Nieweg OE, et al. Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: a multicenter trial. Multicenter Selective Lymphadenectomy Trial Group. Ann Surg. 1999;230:453–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boni G, Manca G, Melfi FMA, Lucchi M, Mussi A, Mariani G. Sentinel lymph node biopsy in non-small-cell lung cancer. In: Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery: a comprehensive team approach. New York: Springer; 2008. p. 166–71.

    Chapter  Google Scholar 

  12. Kitagawa Y, Saha S, Kitajima M. Sentinel lymph node biopsy in cancers of the gastrointestinal tract. In: Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery – a comprehensive team approach. New York: Springer; 2008. p. 148–56.

    Google Scholar 

  13. Collarino A, Vidal-Sicart S, Perotti G, Valdés Olmos RA. The sentinel node approach in ginaecological malignancies. Clin Transl Imaging. 2016;4:411–20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zarifmahmoudi L, Krag DN, Sadeghi R, Bagheri R, Shafiee S. Radioguided sentinel lymph node mapping and biopsy in non-small cell lung cancer (NSCLC). In: Herrmann K, Nieweg O, Povoski S, editors. Radioguided surgery. Cham: Springer; 2016. p. 315–33.

    Chapter  Google Scholar 

  15. Garau LM, Rubello D, Ferretti A, Boni G, Volterrani D, Manca G. Sentinel lymph node biopsy in small papillary thyroid cancer. A review on novel surgical techniques. Endocrine. 2018;62:340–50.

    Article  CAS  PubMed  Google Scholar 

  16. Moncayo VM, Grady EE, Alazraki NP, Aarsvold JN. Sentinel-lymph-node multicenter trials. Semin Nucl Med. 2019;50:56–74.

    Article  Google Scholar 

  17. Wit EMK, Acar C, Grivas N, Yuan C, Horenblas S, Liedberg F, et al. Sentinel node procedure in prostate cancer: a systematic review to assess diagnostic accuracy. Eur Urol. 2017;71:596–605.

    Article  PubMed  Google Scholar 

  18. Brouwer OR, van der Poel HG, Bevers RF, van Gennep EJ, Horenblas S. Beyond penile cancer, is there a role for sentinel node biopsy in urological malignancies? Clin Transl Imaging. 2016;4:395–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paganelli G, De Cicco C, Gatti G, Luini A. Radioguided occult lesion localization in the breast. In: Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery – a comprehensive team approach. New York: Springer; 2008. p. 81–91.

    Google Scholar 

  20. Boni G, Melfi FMA, Manca G, Lucchi M, Mussi A, Mariani G. Radioguided surgery of solitary pulmonary lesions. In: Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery: a comprehensive team approach. New York: Springer; 2008. p. 262–8.

    Chapter  Google Scholar 

  21. Paredes P, Suils J, Danús M, Delgado-Bolton RC, Sánchez-Lorente D, Rodríguez, et al. Diagnosis and radio-guided surgery of lung nodules. Rev Esp Med Nucl Imagen Mol. 2020;39:327–36.

    CAS  PubMed  Google Scholar 

  22. Feggi L, Basaglia E, Corcione S, Querzoli P, Soliani G, Ascanelli S, et al. An original approach in the diagnosis of early breast cancer: use of the same radiopharmaceutical for both non-palpable lesions and sentinel node localisation. Eur J Nucl Med. 2001;28:1589–96.

    Article  CAS  PubMed  Google Scholar 

  23. van Rijk MC, Tanis PJ, Nieweg OE, Loo CE, Valdés Olmos RA, Oldenburg HS, et al. Sentinel node biopsy and concomitant probe-guided tumor excision of nonpalpable breast cancer. Ann Surg Oncol. 2007;14:627–32.

    Article  PubMed  Google Scholar 

  24. Adamczyk B, Seraszek-Jaros A, Listwan K, Wasiewwicz J. Is SNOLL a good localization technique in early breast cancer treatment? A single center’s experience. Rep Pract Oncol Radiother. 2020;25:594–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Van Oosterom MN, Rietbergen DD, Welling MM, van der Poel HG, Maurer T, van Leeuwen FWB. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev Med Devices. 2019;16:711–34.

    Article  PubMed  Google Scholar 

  26. Darr C, Harke NN, Radtke JP, Yirga L, Kesch C, Grootendorst MR, et al. Intraoperative 68Ga-PSMA Cerenkov luminiscence imaging for surgical margins in radical prostatectomy: a feasibility study. J Nucl Med. 2020;61:1500–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nieweg OE, Tanis PJ, Kroon BB. The definition of a sentinel node. Ann Surg Oncol. 2001;8:538–41.

    Article  CAS  PubMed  Google Scholar 

  28. Valdés Olmos RA, Hoefnagel CA, Nieweg OE, Jansen L, Rutgers EJ, Border J, et al. Lymphoscintigraphy in oncology: a rediscovered challenge. Eur J Nucl Med. 1999;26:S2–S10.

    Article  PubMed  Google Scholar 

  29. Orsini F, Guidoccio F, Vidal-Sicart S, Valdés Olmos RA, Mariani G. General concepts on radioguided sentinel lymph node biopsy: preoperative imaging, intraoperative gamma-probe guidance, intraoperative imaging, multimodality imaging. In: Mariani G, Vidal-Sicart S, Valdés Olmos RA, editors. Atlas of lymphoscintigraphy and sentinel node mapping – a pictorial case-based approach. 2nd ed. Milan: Springer; 2020. p. 151–69.

    Chapter  Google Scholar 

  30. Nieweg OE. The sentinel lymph node concept. In: Mariani G, Vidal-Sicart S, Valdés Olmos RA, editors. Atlas of lymphoscintigraphy and sentinel node mapping – a pictorial case-based approach. 2nd ed. Milan: Springer; 2020. p. 143–9.

    Chapter  Google Scholar 

  31. Krag DN, Weaver DL, Alex JC, Fairbank JT. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg Oncol. 1993;2:335–9.

    Article  CAS  PubMed  Google Scholar 

  32. Valdés Olmos RA, Vidal-Sicart S, Nieweg OE. SPECT-CT and real-time intraoperative imaging: new tools for sentinel node localization and radioguided surgery. Eur J Nucl Med Mol Imaging. 2009;36:1–5.

    Article  Google Scholar 

  33. Valdés Olmos RA, Vidal-Sicart S, Nieweg OE. Technological innovation in the sentinel node procedure: towards 3-D intraoperative imaging. Eur J Nucl Med Mol Imaging. 2010;37:1449–51.

    Article  PubMed  Google Scholar 

  34. Vidal-Sicart S, van Leeuwen FW, van den Berg NS, Valdés Olmos RA. Fluorescent radiocolloids: are hybrid tracers the future for lymphatic mapping? Eur J Nucl Med Mol Imaging. 2015;42:1627–30.

    Article  PubMed  Google Scholar 

  35. Bugby SL, Lees JE, Perkins AC. Hybrid intraoperative imaging techniques in radioguided surgery: present clinical applications and future outlook. Clin Transl Imaging. 2017;5:323–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kapteijn BAE, Nieweg OE, Valdés Olmos RA, Liem IH, Panday RKLB, Hoefnagel CA, et al. Reproducibility of lymphoscintigraphy for lymphatic mapping in cutaneous melanoma. J Nucl Med. 1996;37:972–5.

    CAS  PubMed  Google Scholar 

  37. Vidal M, Vidal-Sicart S, Torrents A, Perissinotti A, Navales I, Paredes P, et al. Accuracy and reproducibility of lymphoscintigraphy for sentinel node detection in patients with cutaneous melanoma. J Nucl Med. 2012;53:1193–9.

    Article  PubMed  Google Scholar 

  38. Tanis PJ, Valdés Olmos RA, Muller SH, Nieweg OE. Lymphatic mapping in patients with breast carcinoma: reproducibility of lymphoscintigraphic results. Radiology. 2003;228:546–51.

    Article  PubMed  Google Scholar 

  39. Kroon BK, Valdés Olmos RA, Nieweg OE, Horenblas S. Reproducibility of lymphoscintigraphy for lymphatic mapping in patients with penile carcinoma. J Urol. 2005;174:2214–7.

    Article  PubMed  Google Scholar 

  40. Valdés Olmos RA, Vidal-Sicart S, Rietbergen DDD. SPECT/CT and sentinel node lymphoscintigraphy. Clin Transl Imaging. 2014;2:491–504.

    Article  Google Scholar 

  41. Lerman H, Metser U, Lievshitz G, Sperber F, Shneebaum S, Even-Sapir E. Lymphoscintigraphic sentinel node identification in patients with breast cancer: the role of SPECTCT. Eur J Nucl Med Mol Imaging. 2006;33:329–37.

    Article  CAS  PubMed  Google Scholar 

  42. Israel O, Pellet O, Biassoni L, De Palma D, Estrada-Lobato E, Gnanasegaran G, et al. Two decades of SPECT/CT – the coming of age of a technology. An updated review of the literature evidence. Eur J Nucl Med Mol Imaging. 2019;46:1990–2012.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Valdés Olmos RA, Vidal-Sicart S. SPECT/CT image generation and criteria for sentinel lymph node mapping. In: Mariani G, Vidal-Sicart S, Valdés Olmos RA, editors. Atlas of lymphoscintigraphy and sentinel node mapping – a pictorial case-based approach. 2nd ed. Milan: Springer; 2020. p. 171–83.

    Chapter  Google Scholar 

  44. Schilling C, Stoeckeli SJ, Vigili MG, de Bree R, Lai SY, Alvarez J, et al. Surgical consensus guidelines on sentinel node biopsy (SNB) in patients with oral cancer. Head Neck. 2019;41:2655–64.

    PubMed  Google Scholar 

  45. van der Poel HG, Wit EM, Acar C, van den Berg NS, van Leeuwen FWB, Valdés Olmos RA, et al. Sentinel node biopsy for prostate cancer; report from a consensus panel meeting. BJU Int. 2017;120:204–11.

    Article  PubMed  Google Scholar 

  46. Bluemel C, Herrmann K, Giammarile F, Nieweg OE, Dubreuil J, Testori A, et al. EANM practice guidelines for lymphoscintigraphy and sentinel lymph node biopsy in melanoma. Eur J Nucl Med Mol Imaging. 2015;42:1750–66.

    Article  PubMed  Google Scholar 

  47. Giammarile F, Schilling C, Gnanasegaran G, Bal C, Oyen WJG, Rubello D, et al. The EANM practical guidelines for sentinel lymph node localization in oral cavity squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2019;46:623–37.

    Article  PubMed  Google Scholar 

  48. Giammarile F, Bozkurt MF, Cibula D, Pahisa J, Oyen WJ, Paredes P, et al. The EANM clinical and technical guidelines for lymphoscintigraphy and sentinel node localization in gynaecological cancers. Eur J Nucl Med Mol Imaging. 2014;41:1463–77.

    Article  PubMed  Google Scholar 

  49. Valdés Olmos RA, Vidal-Sicart S, Manca G, Mariani G, León-Ramírez LF, et al. Advances in radioguided surgery in oncology. Q J Nucl Med Mol Imaging. 2017;61:247–70.

    Article  PubMed  Google Scholar 

  50. Mahieu R, Krijger GC, Ververs FFT, de Roos R, de Bree R, de Keizer B. [68Ga]Ga-tilmanocept PET/CT lymphoscintigraphy: a novel technique for sentinel lymph node imaging. Eur J Nucl Med Mol Imaging. 2021;48:963–5.

    Google Scholar 

  51. Maurer T, van Leeuwen FWB, Schottelius M, Eiber M. Entering the era of molecularly targeted precision surgery in recurrent prostate cancer. J Nucl Med. 2019;60:156–7.

    Article  CAS  Google Scholar 

  52. Obenaus E, Erba PA, Chinol M, Van de Wiele C, Janoki GA, Dierckx RA, Scopinaro F, Signore A. Radiopharmaceuticals for radioguided surgery. In: Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery – a comprehensive team approach. New York: Springer; 2008. p. 3–11.

    Chapter  Google Scholar 

  53. Ballinger JR. The use of protein-based radiocolloids in sentinel node localization. Clin Transl Imaging. 2015;3:179–201.

    Article  Google Scholar 

  54. Vera DR, Wallace AM, Hoh CK, Mattrey RF. A synthetic macromolecule for sentinel node detection: 99mTc-DTPA-mannosyl-dextran. J Nucl Med. 2001;42:951–9.

    CAS  PubMed  Google Scholar 

  55. Vidal-Sicart S, Vera DR, Valdés Olmos RA. Next generation of radiotracers for sentinel lymph node biopsy: what is still necessary to establish new imaging paradigms? Rev Esp Med Nucl Imagen Mol. 2018;37:373–9.

    CAS  PubMed  Google Scholar 

  56. Brouwer OR, Vermeeren L, Klop WMC, Balm AJM, van der Poel HG, van Rhijn BW, et al. Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med. 2012;53:1034–40.

    Article  CAS  PubMed  Google Scholar 

  57. van den Berg NS, Brouwer OR, Schaafsma BE, Mathéron HM, Klop WM, Balm AJ, et al. Multimodal surgical guidance during sentinel node biopsy for melanoma: combined gamma tracing and fluorescence imaging of the sentinel node through use of the hybrid tracer indocyanine green-99mTc-nanocolloid. Radiology. 2015;275:521–9.

    Article  PubMed  Google Scholar 

  58. KleinJan GH, van Werkhoven E, van den Berg NS, Karakullukcu MB, Zijlmans HJMAA, van der Hage JA, et al. The best of both worlds: a hybrid approach for optimal pre- and intraoperative identification of sentinel lymph nodes. Eur J Nucl Med Mol Imaging. 2018;45:1915–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. De Cicco C, Pizzamiglio M, Trifirò G, Luini A, Ferrari M, Prisco G, et al. Radioguided occult lesion localisation (ROLL) and surgical biopsy in breast cancer. Technical aspects. Q J Nucl Med. 2002;46:145–51.

    PubMed  Google Scholar 

  60. Manca G, Mazzarri S, Rubello D, Tardelli E, Delgado-Bolton RC, Giammarile F, et al. Radioguided occult lesion localization. Technical procedures and clinical applications. Clin Nucl Med. 2017;42:e498–503.

    Article  PubMed  Google Scholar 

  61. Gray RJ, Salud C, Nguyen K, Dauway E, Friedland J, Berman C, Peltz E, et al. Randomized prospective evaluation of a novel technique for biopsy or lumpectomy of nonpalpable breast lesions: radioactive seed versus wire localization. Ann Surg Oncol. 2001;8:711–5.

    Article  CAS  PubMed  Google Scholar 

  62. Niinikoski L, Hukkinen K, Leidenius MHK, Vaara P, Voynov A, Heikkilä P, et al. Resection margins and local recurrences of impalpable breast cancer: comparison between radioguided occult lesion localization (ROLL) and radioactive seed localization (RSL). Breast. 2019;47:93–101.

    Article  PubMed  Google Scholar 

  63. Donker M, Drukker CA, Valdés Olmos RA, Rutgers EJ, Loo CE, Sonke GS, et al. Guiding breast-conserving surgery in patients after neoadjuvant systemic therapy for breast cancer: a comparison of radioactive seed localization with the ROLL technique. Ann Surg Oncol. 2013;20:2569–75.

    Article  PubMed  Google Scholar 

  64. Giles YŞ, Sarıcı IS, Tunca F, Sormaz IC, Salmaslıoğlu A, Adalet I, et al. The rate of operative success achieved with radioguided occult lesion localization and intraoperative ultrasonography in patients with recurrent papillary thyroid cancer. Surgery. 2014;156:1116–26.

    Article  PubMed  Google Scholar 

  65. Donker M, Straver ME, Wesseling J, Loo CE, Schot M, Drukker CA, et al. Marking axillary lymph nodes with radioactive iodine seeds for axillary staging after neoadjuvant systemic treatment in breast cancer patients: the MARI procedure. Ann Surg. 2015;261:378–82.

    Article  PubMed  Google Scholar 

  66. Hassing CMS, Tvedskov TF, Kroman N, Klausen TL, Drejøe JB, Tvedskov JF, et al. Radioactive seed localization of non-palpable lymph nodes – a feasibility study. Eur J Surg Oncol. 2018;44:725–30.

    Article  CAS  PubMed  Google Scholar 

  67. Jansen L, Nieweg OE, Valdés Olmos RA, Rutgers EJ, Peterse JL, de Vries J, et al. Improved staging of breast cancer through lymphatic mapping and sentinel node biopsy. Eur J Surg Oncol. 1998;24:445–6.

    Article  CAS  PubMed  Google Scholar 

  68. Guckenberger M, Lievens Y, Bouma AB, Collette L, Dekker A, deSouza NM, et al. Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 2020;21e18–28.

    Google Scholar 

  69. Povoski SP, Hall NC, Murrey Jr DA, Wright CL, Martin Jr EW. Feasibility of a multimodal 18F-FDG-directed lymph node surgical excisional biopsy approach for appropriate diagnostic tissue sampling in patients with suspected lymphoma. BMC Cancer. 2015;15:378.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Molina MA, Goodwin WJ, Moffat FL, Serafini AN, Sfakianakis GN, Avisar E. Intra-operative use of PET probe for localization of FDG avid lesions. Cancer Imaging. 2009;9:59–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Collamati F, Moretti R, Alunni-Solestizi L, Bocci V, Cartoni A, Collarino A, et al. Characterization of a β detector on positron emitters for medical applications. Phys Med. 2019;67:85–90.

    Article  CAS  PubMed  Google Scholar 

  72. Maurer T, Robu S, Schottelius M, Schwamborn K, Rauscher I, van den Berg NS, et al. 99mTechnetium-based prostate-specific membrane antigen-radioguided surgery in recurrent prostate cancer. Eur Urol. 2019;75:659–666.

    Google Scholar 

  73. Tamura R, Pratt EC, Grimm J. Innovations in nuclear imaging instrumentation: Cerenkov imaging. Semin Nucl Med. 2018;48:359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Desiato V, Melis M, Amato B, Bianco T, Rocca A, Amato M, et al. Minimally invasive radioguided parathyroid surgery; a literature review. Int J Surg. 2016;28(Suppl 1):S84–93.

    Article  PubMed  Google Scholar 

  75. Wang YZ, Diebold A, Woltering E, King H, Boudreaux JP, Anthony LB, et al. Radioguided exploration facilitates surgical cytoreduction of neuroendocrine tumors. J Gastrointest Surg. 2012;16:635–40.

    Article  PubMed  Google Scholar 

  76. Nagano Y, Inoue M, Uchida K, Otake K, Kusunoki M. 123I-metaiodobenzylguanidine radio-guided navigation surgery for multiple recurrent paragangliomas. Pediatr Int. 2020;62:231–232.

    Google Scholar 

  77. Castaldi P, Rufini V, Treglia G, Bruno I, Perotti G, Stifano G, et al. Impact of 111In-DTPA-octreotide SPECT/CT fusion in the management of neuroendocrine tumours. Radiol Med. 2008;113:1056–67.

    Article  CAS  PubMed  Google Scholar 

  78. El Lakis M, Gianakou A, Nockel P, Wiseman D, Tirosh A, Quezado MA, et al. Radioguided surgery with Gallium 68 Dotatate for patients with neuroendocrine tumors. JAMA Surg. 2019;154:40–5.

    Article  PubMed  Google Scholar 

  79. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guidelines for SPECT/CT imaging. J Nucl Med. 2006;47:1227–34.

    PubMed  Google Scholar 

  80. Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics. 2006;26:905–22.

    Article  PubMed  Google Scholar 

  81. Vidal-Sicart S, Paredes P, Zanón G, Pahisa J, Martinez-Román S, Caparrós X, et al. Added value of intraoperative real-time imaging in searches for difficult-to-locate sentinel nodes. J Nucl Med. 2010;51:1219–25.

    Article  PubMed  Google Scholar 

  82. Fuster D, Vidal-Sicart S, Torregrosa JV, Paredes P, Rubello D, Pons F. What is the role of preoperative scintigraphic imaging and the intraoperative gamma probe in secondary hyperparathyroidism? Nucl Med Commun. 2014;35:443–5.

    Article  PubMed  Google Scholar 

  83. Hellingman D, de Wit-van der Veen LJ, Klop WM, Valdés Olmos RA. Detecting near-the-injection-site sentinel nodes in head and neck melanomas with a high-resolution portable gamma camera. Clin Nucl Med. 2015;40:e11–6.

    Article  PubMed  Google Scholar 

  84. Hellingman D, Vidal-Sicart S, de Wit-van der Veen LJ, Paredes P, Valdés Olmos RA. A new portable hybrid camera for fused optica land scintigraphic imaging: first clinical experiences. Clin Nucl Med. 2016;41:e39–43.

    Article  PubMed  Google Scholar 

  85. Lees JE, Bugby SL, Bhatia BS, Jambi LK, Alqahtani MS, McKnight WR, et al. A small field of view camera for hybrid gamma and optical imaging. J Instrum. 2014;9:C12020.

    Article  Google Scholar 

  86. Wendler T, Herrmann K, Schnelzer A, Lasser T, Traub J, Kutter O, et al. First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur J Nucl Med Mol Imaging. 2010;37:1452–61.

    Article  PubMed  Google Scholar 

  87. Bluemel C, Schnelzer A, Okur A, Ehlerding A, Paepke S, Scheidhauer K, et al. Freehand SPECT for image-guided sentinel lymph node biopsy in breast cancer. Eur J Nucl Med Mol Imaging. 2013;40:1656–61.

    Article  PubMed  Google Scholar 

  88. KleinJan GH, Karakullukcu B, Klop WMC, Engelen T, van den Berg NS, van Leeuwen FWB. Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region. EJNMMI Res. 2017;17:65.

    Article  Google Scholar 

  89. Mihaljevic AL, Rieger A, Belloni B, Hein R, Okur A, Scheidhauer K, et al. Transferring innovative freehand SPECT to the operating room: first experiences with sentinel lymph node biopsy in malignant melanoma. Eur J Surg Oncol. 2014;40:42–8.

    Article  CAS  PubMed  Google Scholar 

  90. Casáns-Tormo I, Prado-Wohlwend S, Díaz-Expósito R, Cassinello-Fernández N, Ortega-Serrano J. Initial experience in intraoperative radiolocalization of the parathyroid adenoma with freehand SPECT and comparative assessment with portable gamma-camera. Rev Esp Med Nucl Imagen Mol. 2015;34:116–9.

    PubMed  Google Scholar 

  91. Rietbergen DDD, Meershoek P, van Oosterom MN, Roestenberg M, van Erkel AR, Smit F, et al. Freehand-SPECT with 99mTc-HDP as tool to guide percutaneous biopsy of skeletal lesions detected on bone scintigraphy. Rev Esp Med Nucl Imagen Mol. 2019;38:218–23.

    CAS  PubMed  Google Scholar 

  92. Milgram P, Kishino F. A taxonomy of mixed reality visual displays. IEICE Transactions of Information and Systems. The Institute of Electronics, Information and Communication Engineers 1994;E77-D:1321–9.

    Google Scholar 

  93. Van Oosterom MN, van der Poel HG, Navab N, van de Velde CJH, van Leeuwen FWB. Computer-assisted surgery: virtual- and augmented-reality displays for navigating during urological interventions. Curr Opin Urol. 2018;28:205–13.

    Article  PubMed  Google Scholar 

  94. Brouwer OR, van den Berg NS, Mathéron HM, Wendler T, van der Poel HG, Horenblas S, et al. Feasibility of intraoperative navigation to the sentinel node in the groin using preoperatively acquired single photon emission computerized tomography data: transferring functional imaging to the operating room. J Urol. 2014;192:1810–6.

    Article  PubMed  Google Scholar 

  95. Del Pozo Jiménez G, Rodríguez Monzalve M, Carballido Rodríguez J, Castillón Vela I. Virtual reality and intracorporeal navigation in urology. Arch Esp Urol. 2019;72:867–81.

    PubMed  Google Scholar 

  96. Engelen T, Winkel BM, Rietbergen DD, KleinJan GH, Vidal-Sicart S, Valdés Olmos RA, et al. The next evolution in radioguided surgery: breast cancer related sentinel node localization using a freehandSPECT-mobile gamma camera combination. Am J Nucl Med Mol Imaging. 2015;5:233–45.

    PubMed  PubMed Central  Google Scholar 

  97. Pouw B, de Wit-van der Veen LJ, van Duijnhoven F, Rutgers EJ, Stokkel MP, Valdés Olmos RA, Vrancken Peeters MT. Intraoperative 3D navigation for single or multiple 125I-seed localization in breast-preserving cancer surgery. Clin Nucl Med. 2016;41:e-216–20.

    Article  Google Scholar 

  98. Bluemel C, Cramer A, Grossmann C, Kajdi GW, Malzahn U, Lamp N, et al. iROLL: does 3-D radioguided occult lesion localization improve surgical management in early-stage breast cancer? Eur J Nucl Med Mol Imaging. 2015;42:1692–9.

    Article  CAS  PubMed  Google Scholar 

  99. De Vries HM, Blok JM, Veerman HN, van Beurden F, van der Poel HG, Valdés Olmos RA, Brouwer OR. Preoperative and intraoperative lymphatic mapping for radioguided sentinel node biopsy in cancers of the male reproductive system. In: Mariani G, Vidal-Sicart S, Valdés Olmos RA, editors. Atlas of lymphoscintigraphy and sentinel node mapping – a case-based approach. 2nd ed. Milan: Springer; 2020. p. 331–56.

    Chapter  Google Scholar 

  100. Wever L, de Vries HM, van der Poel H, van Leeuwn F, Horenblas S, Brouwer O. Minimally invasive evaluation of the clinically negative inguinal node in penile cancer: dynamic sentinel node biopsy. Urol Oncol. 2020;17:S1078-1439(20)30581-0. (E-pub ahead of print).

    Google Scholar 

  101. Leijte JA, Hughes B, Graafland NM, Kroon BK, Valdés Olmos RA, Nieweg OE, et al. Two-center evaluation of dynamic sentinel node biopsy for squamous cell carcinoma of the penis. J Clin Oncol. 2009;27:3325–9.

    Article  PubMed  Google Scholar 

  102. Djajadiningrat RS, Graafland NM, van Werkhoven E, Meinhardt W, Bex A, van der Poel HG, et al. Contemporary management of regional nodes in penile cancer-improvement of survival? J Urol. 2014;191:68–73.

    Article  PubMed  Google Scholar 

  103. Lam W, Alnajjar HM, La-Touche S, Perry M, Sharma D, Corbishley C, et al. Dynamic sentinel lymph node biopsy in patients with invasive squamous cell carcinoma of the penis: a prospective study of the long-term outcome of 500 inguinal basins assessed at a single institution. Eur Urol. 2013;63:657–63.

    Article  PubMed  Google Scholar 

  104. Leijte JA, Valdés Olmos RA, Nieweg OE, Horenblas S. Anatomical mapping of lymphatic drainage in penile carcinoma with SPECT-CT: implications for the extent of inguinal lymph node dissection. Eur Urol. 2008;54:885–90.

    Article  PubMed  Google Scholar 

  105. Omorphos S, Saad Z, Kirkham A, Nigam R, Malone P, Bomanji J, Muneer A. Zonal mapping of sentinel lymph nodes in penile cancer patients using fused SPECT/CT imaging and lymphoscintigraphy. Urol Oncol. 2018;36:530.e1–6.

    Article  Google Scholar 

  106. Dell’Oglio P, de Vries HM, Mazzone E, KleinJan GH, Donswijk ML, van der Poel HG, et al. Hybrid indocyanine green-99mTc-nanocolloid for single-photon emission computed tomography and combined radio- and fluorescence-guided sentinel node biopsy in penile cancer: results of 740 inguinal basins assessed at a single institution. Eur Urol. 2020;78:865–72.

    Article  PubMed  Google Scholar 

  107. Vermeeren L, Valdés Olmos RA, Meinhardt W, Bex A, van der Poel HG, Vogel WV, et al. Value of SPECT/CT for detection and anatomic localization of sentinel lymph nodes before laparoscopic sentinel node lymphadenectomy in prostate carcinoma. J Nucl Med. 2009;50:865–70.

    Article  PubMed  Google Scholar 

  108. Meinhardt W, van der Poel HG, Valdés Olmos RA, Bex A, Brouwer OR, Horenblas S. Laparoscopic sentinel lymph node biopsy for prostate cancer: the relevance of locations outside the extended dissection area. Prostate Cancer. 2012;751-3.

    Google Scholar 

  109. Vermeeren L, Meinhardt W, van der Poel HG, Valdés Olmos RA. Lymphatic drainage from the treated versus untreated prostate: feasibility of sentinel node biopsy in recurrent cancer. Eur J Nucl Med Mol Imaging. 2010;37:2012–26.

    Article  Google Scholar 

  110. Rousseau C, Rousseau T, Campion L, Lacoste J, Aillet G, Potiron E, et al. Laparoscopic sentinel lymph node versus hyperextensive pelvic dissection for staging clinically localized prostate carcinoma; a prospective study of 200 patients. J Nucl Med. 2014;55:753–8.

    Article  PubMed  Google Scholar 

  111. De Bonilla-Damiá A, Brouwer OR, Meinhardt W, Valdés Olmos RA. Lymphatic drainage in prostate carcinoma assessed by lymphoscintigraphy and SPECT/CT: its importance for the sentinel node procedure. Rev Esp Med Nucl Imagen Mol. 2012;31:66–70.

    PubMed  Google Scholar 

  112. Michaud AV, Samain B, Ferrer L, Fleury V, Doré M, Colombié M, et al. Haute couture or ready-to-wear? Tailored pelvic radiotherapy for prostate cancer based on individualized sentinel lymph node detection. Cancers (Basel). 2020;12:944.

    Article  Google Scholar 

  113. KleinJan GH, van den Berg NS, de Jong J, Wit EM, Thygessen H, Vegt E, et al. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery. Eur J Nucl Med Mol Imaging. 2016;43:1278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Meershoek P, van Oosterom MN, Simon H, Mengus L, Maurer T, van Leeuwen PJ, et al. Robot-assisted laparoscopic surgery using DROP-IN radioguidance: first-in-human transition. Eur J Nucl Med Mol Imaging. 2019;46:49–53.

    Article  CAS  PubMed  Google Scholar 

  115. Vees H, Steiner C, Dipasquale G, Chouiter A, Zilli T, Velazquez M, et al. Target volume definition in high-risk prostate cancer patients using sentinel node SPECT/CT and 18F-choline PET/CT. Radiat Oncol. 2012;7:134.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bois F, Noirot C, Dietemann S, Mainta I, Zilli T, Garibotto V, Walter MA. [68Ga]Ga-PSMA-11 in prostate cancer: a comprehensive review. Am J Nucl Med Mol Imaging. 2020;10:349–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hope TA, Goodman JZ, Allen IE, Calais J, Fendler WP, Carroll PR. Metaanalysis of 68Ga-PSMA-11 PET accuracy for the detection of prostate vancer validated by histopathology. J Nucl Med. 2019;60:786–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rauscher I, Düwel C, Wirtz M, Schottelius M, Wester HJ, Schwamborn K, et al. Value of 111In-prostate-specific membrane antigen (PSMA)-radioguided surgery for salvage lymphadenectomy in recurrent prostate cancer: correlation with histopathology and clinical follow-up. BJU Int. 2017;120:40–7.

    Article  CAS  PubMed  Google Scholar 

  119. Van Leeuwen FWB, van Oosterom MN, Meershoek P, van Leeuwen PJ, Berliner C, van der Poel HG, et al. Minimal-invasive robot-assisted image-guided resection of prostate-specific membrane antigen positive lymph nodes in recurrent prostate cancer. Clin Nucl Med. 2019;44:580–1.

    Article  PubMed  Google Scholar 

  120. Liss MA, Noguchi J, Lee HJ, Vera DR, Kader AK. Sentinel lymph node biopsy in bladder cancer: systematic review and technology update. Indian J Urol. 2015;31:170–5.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Aljabery F, Shabo I, Olsson H, Gimm O, Jahnson S. Radio-guided sentinel lymph node detection and lymph node mapping in invasive urinary bladder cancer: a prospective clinical study. BJU Int. 2017;120:329–36.

    Article  CAS  PubMed  Google Scholar 

  122. Zarifmahmoudi L, Ghorbani H, Sadri K, Tavakkoli M, Keshvari M, Salehi M, Sadeghi R. Sentinel node biopsy in urothelial carcinoma of the bladder: systematic review and meta-analysis. Urol Int. 2019;103:373–82.

    Article  PubMed  Google Scholar 

  123. Blok JM, Kerst JM, Vegt E, Brouwer OR, Meijer RP, Bosch JHL, et al. Sentinel node biopsy in clinical stage I testicular cancer enables early detection of occult metastatic disease. BJU Int. 2019;123:424–30.

    Article  Google Scholar 

  124. Kuusk T, Zondervan P, Lagerveld B, Rozenberg B, Raman A, Blok JM, et al. Topographic distribution of first landing sites of lymphatic metastases from patient with renal cancer. Urol Oncol. 2020;38:521–5.

    Article  CAS  PubMed  Google Scholar 

  125. Kuusk T, de Bruijn R, Brouwer OR, de Jong J, Donswijk M, Grivas N, Hendricksen K, et al. Lymphatic drainage from renal tumors in vivo: a prospective sentinel node study using SPECT/CT imaging. J Urol. 2018;199:1426–32.

    Article  PubMed  Google Scholar 

  126. Collarino A, Fuoco V, Garganese G, Pereira Arias-Bouda LM, Perotti G, Manca G, et al. Lymphoscintigraphy and sentinel lymph node biopsy in vulvar carcinoma: update from a European expert panel. Eur J Nucl Med Mol Imaging. 2020;47:1261–74.

    Article  CAS  PubMed  Google Scholar 

  127. Covens A, Vella ET, Kennedy EB, Reade CJ, Jimenez W, Le T. Sentinel lymph node biopsy in vulvar cancer: systematic review, meta-analysis and guideline recommendations. Gynecol Oncol. 2015;137:351–61.

    Article  PubMed  Google Scholar 

  128. Te Grootenhuis NC, van der Zee AG, van Doorn HC, van der Velden J, Vergote I, Zanagnolo V, et al. Sentinel nodes in vulvar cancer: long-term follow-up of the GROningen INternational Study on Sentinel nodes in Vulvar cancer (GROINSS-V) I. Gynecol Oncol. 2016;140:8–14.

    Article  Google Scholar 

  129. Collarino A, Zurru A, Vidal-Sicart S. Preoperative and intraoperative lymphatic mapping for radioguided sentinel node biopsy in cancers of the female reproductive system. In: Mariani G, Vidal-Sicart S, Valdés Olmos RA, editors. Atlas of lymphoscintigraphy and sentinel node mapping – a case-based approach. 2nd ed. Milan: Springer; 2020. p. 315–30.

    Chapter  Google Scholar 

  130. Collarino A, Donswijk ML, van Driel WJ, Stokkel MP, Valdés Olmos RA. The use of SPECT/CT for anatomical mapping of lymphatic drainage in vulvar cancer: possible implications for the extent of inguinal lymph node dissection. Eur J Nucl Med Mol Imaging. 2015;42:2064–71.

    Article  PubMed  Google Scholar 

  131. Doorn HC, van Beekhuizen HJ, Gaarenstroom KN, van der Velden J, van der Zee AG, Oonk M, de Hullu JA. Repeat sentinel lymph node procedure in patients with recurrent vulvar squamous cell carcinoma is feasible. Gynecol Oncol. 2016;140:415–9.

    Article  PubMed  Google Scholar 

  132. Deken MM, van Doorn HC, Verver D, Boogerd LSF, de Valk KS, Rietbergen DDD, et al. Near-infrared fluorescence imaging compared to standard sentinel node detection with blue dye in patients with vulvar cancer- a randomized controlled trial. Gynecol Oncol. 2020;159:672–80.

    Article  CAS  PubMed  Google Scholar 

  133. Kadkhodayan S, Hasanzadeh M, Treglia G, Azad A, Yousefi Z, Zarifmahmoudi L, Sadeghi R. Sentinel node biopsy for lymph nodal staging of uterine cervix cancer: a systematic review and meta-analysis of the pertinent literature. Eur J Surg Oncol. 2015;41:1–20.

    Article  CAS  PubMed  Google Scholar 

  134. Bats AS, Frati A, Mathevet P, Orliaguet I, Querleu D, Zerdoud S, et al. Contribution of lymphoscintigraphy to intraoperative sentinel lymph node detection in early cervical cancer: analysis of the prospective multicenter SENTICOL cohort. Gynecol Oncol. 2015;137:264–9.

    Article  PubMed  Google Scholar 

  135. Hoogendam JP, Veldhuis WB, Hobbelink MG, Verheijen RH, van den Bosch MA, Zweemer RP. 99mTc SPECT/CT versus planar lymphoscintigraphy for preoperative sentinel lymph node detection in cervical cancer: a systematic review and metaanalysis. J Nucl Med. 2015;56:675–680.

    Google Scholar 

  136. Giammarile F, Bozkur MF, Cibula D, Pahisa J, Oyen WJ, Paredes P, et al. The EANM clinical and technical guidelines for lymphoscintigraphy and sentinel node localization in gynecological cancers. Eur J Nucl Med Mol Imaging. 2014;41:1463–77.

    Article  PubMed  Google Scholar 

  137. Frumovitz M, Plante M, Lee PS, Sandadi S, Lilja J, Escobar PF, et al. Near-infrared fluorescence for detection of sentinel lymph nodes in women with cervical and uterine cancers (FILM): a randomised, phase 3, multicentre, non-inferiority trial. Lancet Oncol. 2018;19:1394–403.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Paredes P, Vidal-Sicart S, Campos F, Tapias A, Sánchez N, Martínez S, et al. Role of ICG-99mTc-nanocolloid for sentinel lymph node detection in cervical cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2017;44:1853–61.

    Article  CAS  PubMed  Google Scholar 

  139. Ansari M, Rad MA, Hassanzadeh M, Gholami H, Yousefi Z, Dabbagh VR, Sadeghi R. Sentinel node biopsy in endometrial cancer: systematic review and meta-analysis of the literature. Eur J Gynaecol Oncol. 2013;34:387–401.

    CAS  PubMed  Google Scholar 

  140. Ji Q, Wang X, Jiang J, Chen L. Sentinel lymph node mapping in high-risk endometrial cancer: a systematic review and meta-analysis. Gland Surg. 2020;9:2091–105.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Holloway RW, Abu-Rustum NR, Backes FJ, Boggess JF, Gotlieb WH, Lowery WJ, et al. Sentinel lymph node mapping and staging in endometrial cancer: a Society of Gynecologic Oncology Literature review with consensus recommendations. Gynecol Oncol. 2017;146:405–15.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Perissinotti A, Paredes P, Vidal-Sicart S, Torné A, Albela S, Navales I, et al. Use of SPECT/CT for improved sentinel lymph node localization in endometrial cancer. Gynecol Oncol. 2013;129:42–8.

    Article  CAS  PubMed  Google Scholar 

  143. Sawicki S, Kobierski J, Lapinska-Szumczyk S, Lass P, Cytawa W, Bianek-Bodzak A, Wydra D. Comparison of SPECT/CT results and intraoperative detection of sentinel lymph nodes in endometrial cancer. Nucl Med Commun. 2013;34:590–6.

    Article  PubMed  Google Scholar 

  144. Naaman Y, Pinkas L, Roitman S, Ikher S, Oustinov N, Vaisbuch E, et al. The added value of SPECT/CT in sentinel lymph node mapping for endometrial carcinoma. Ann Surg Oncol. 2016;23:450–5.

    Article  CAS  PubMed  Google Scholar 

  145. Togami S, Kawamura T, Yanazume S, Kamio M, Kobayashi H. Comparison of lymphoscintigraphy and single photon emission computed tomography with computed tomography (SPECT/CT) for sentinel lymph node detection in endometrial cancer. Int J Gynecol Cancer. 2020;30:626–30.

    Article  PubMed  Google Scholar 

  146. Sahbai S, Fiz F, Taran F, Brucker S, Wallviewer D, Kupferschlaeger J, et al. Influence of 99m-Tc-nanocolloid activity concentration on sentinel lymph node detection in endometrial cancer: a quantitative SPECT/CT study. Diagnostics (Basel). 2020;10:700.

    Article  CAS  Google Scholar 

  147. Kleppe M, Brans B, Van Gorp T, Slangen BF, Kruse AJ, Pooters IN, et al. The detection of sentinel nodes in ovarian cancer: a feasibility study. J Nucl Med. 2014;55:1799–804.

    Article  PubMed  Google Scholar 

  148. Lago V, Bello P, Montero B, Matute L, Padilla-Iserte P, Lopez S, et al. Sentinel lymph node technique in early-stage ovarian cancer (SENTOV): a phase II clinical trial. Int J Gynecol Cancer. 2020;30:1390–6.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Takeuchi H, Kitagawa Y. Sentinel node navigation surgery in esophageal cancer. Ann Gastroenterol Surg. 2019;3:7–13.

    Article  PubMed  Google Scholar 

  150. Nagaraja V, Eslick GD, Cox MR. Sentinel lymph node in oesophageal cancer-a systematic review and meta-analysis. J Gastrointest Oncol. 2014;5:127–41.

    PubMed  PubMed Central  Google Scholar 

  151. Kakhki VR, Bagheri R, Tehranian S, Shojaei P, Gholami H, Sadeghi R, Krag DN. Accuracy of sentinel node biopsy in esophageal carcinoma: a systematic review and meta-analysis of the pertinent literature. Surg Today. 2014;44:607–19.

    Article  Google Scholar 

  152. Niihara M, Takeuchi H, Nakahara T, Saikawa Y, Takahashi T, Wada N, et al. Sentinel lymph node mapping for 385 gastric cancer patients. J Surg Res. 2016;200:73–81.

    Article  PubMed  Google Scholar 

  153. Huang Y, Pan M, Chen B. A systematic review and meta-analysis of sentinel lymph node biopsy in gastric cancer, an optimization of imaging protocol for tracer mapping. World J Surg 2021;online ahead of print.

    Google Scholar 

  154. Symeonidis D, Tepetes K. Techniques and current role of sentinel lymph node (SLN) concept in gastric cancer surgery. Front Surg. 2019;5:77.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Balagué C, Gomez I. Preoperative and intraoperative lymphatic mapping for sentinel node biopsy in cancers of the gastrointestinal tract. In: Mariani G, Vidal-Sicart S, Valdés Olmos RA, editors. Atlas of lymphoscintigraphy and sentinel node mapping – a case-based approach. 2nd ed. Milan: Springer; 2020. p. 299–314.

    Chapter  Google Scholar 

  156. Tehranian S, Treglia G, Krag DN, Dabbagh Kakhki VR, Zakavi SR, Sadeghi R, Keshtgar M. Sentinel node mapping in anal canal cancer: systematic review and meta-analysis. J Gastrointestin Liver Dis. 2013;22:321–8.

    PubMed  Google Scholar 

  157. De Nardi P, Mistrangelo M, Burtulo G, Passoni P, Slim N, Romzoni M, et al. Tailoring the radiotherapy approach in patients with anal squamous cell carcinoma based on inguinal sentinel lymph node biopsy. J Surg Oncol. 2021;123:315–21.

    Article  PubMed  Google Scholar 

  158. Ambrogi MC, Melfi F, Zirafa C, Lucchi M, De Liperi A, Mariani G, et al. Radio-guided thoracoscopic surgery (RGTS) of small pulmonary nodules. Surg Endosc. 2012;26:914–9.

    Article  PubMed  Google Scholar 

  159. Galetta D, Bellomi M, Grana C, Spaggiari L. Radio-guided localization and resection of small or ill-defined pulmonary lesions. Ann Thorac Surg. 2015;100:1175–80.

    Article  PubMed  Google Scholar 

  160. Tyng CJ, Nogueira VH, Bitencourt AG, Santos LC, Souza TV, Zilio MB, et al. Computed tomographically guided injection of cyanoacrylate in association with preoperative radioguided occult lesion localization of ground-glass opacities. Ann Thorac Surg. 2015;99:1838–40.

    Article  PubMed  Google Scholar 

  161. Durmo R, Lechiara M, Benetti D, Rodella C, Camoni L, Albano D, et al. Radioguided lung lesion localization: introducing a fluoroscopy system in a SPECT/CT scan. Nucl Med Commun. 2019;40:597–603.

    Article  PubMed  Google Scholar 

  162. Taghizadeh Kermani A, Bagheri R, Tehranian S, Shojaee P, Sadeghi R, Krag N, D. Accuracy of sentinel node biopsy in the staging of non-small cell lung carcinomas: systematic review and meta-analysis of the literature. Lung Cancer. 2013;80:5–14.

    Article  PubMed  Google Scholar 

  163. Uribe-Etxebarria Lugariza-Aresti N, Barceló Galíndez R, Pac Ferrer J, Méndez Martin J, Genollá Subirats J, Casanova Viudez J. Biopsy of the sentinel node in lung cancer. Med Clin (Barc). 2017;148:257–9.

    Article  Google Scholar 

  164. García-Talavera P, Ruano R, Rioja ME, Cordero JM, Razola P, Vidal-Sicart S. Radioguided surgery in neuroendocrine tumors. A review of the literature. Rev Esp Med Nucl Imagen Mol. 2014;33:358–65.

    PubMed  Google Scholar 

  165. Hinseveld FJ, Wit EWK, van Leeuwen PJ, Brouwer OR, Donswijk ML, Tillier CN, et al. Prostate-specific membran antigen PET/CT combined with sentinel node biopsy for primary lymph node staging in prostate cancer. J Nucl Med. 2020;61:540–5.

    Article  Google Scholar 

  166. van Leeuwen FWB, Winter A, van der Poel HG, Eiber M, Suardi N, Graefen M, et al. Technologies for image-guided surgery for managing lymphatic metastases in prostate cancer. Nat Rev Urol. 2019;16:159–71.

    Article  PubMed  Google Scholar 

  167. Heil J, Kuerer HM, Pfob A, Rauch G, Sinn HP, Liefers GJ, et al. Eliminating the breast cancer surgery paradigms after neoadjuvant systemic therapy: current evidence and future challenges. Ann Oncol. 2020;31:61–71.

    Article  CAS  PubMed  Google Scholar 

  168. Koolen BB, Donker M, Straver ME, Rutgers EJT, Valdés Olmos RA, Vrancken Peeters MJTFD. Combined PET-CT and axillary lymph node marking with radioactive iodine seeds (Mari procedure) for tailored axillary treatment in node-positive breast cancer after neo-adjuvant therapy. Br J Surg. 2017;104:1188–96.

    Article  CAS  PubMed  Google Scholar 

  169. Van der Noordaa MEM, van Duijnhoven FH, Straver ME, Groen EJ, Stokkel M, Loo CE, et al. Major reduction in axillary lymph node dissections after neoadjuvant systemic therapy for node positive breast cancer by combining PET/CT and the MARI procedure. Ann Surg Oncol. 2018;25:1512–20.

    Article  PubMed  Google Scholar 

  170. Simons JM, van Nijnatten TJA, van der Pool CC, Luite EJT, Koppert LB, Smidt ML. Diagnostic accuracy of different surgical procedures for axillary staging after neoadjuvant systemic therapy in node-positive breast cancer: a systematic review and mata-nalysis. Ann Surg. 2019;269:432–42.

    Article  PubMed  Google Scholar 

  171. Heller S, Zanzonico P. Nuclear probes and intraoperative gamma cameras. Semin Nucl Med. 2011;41:166–81.

    Article  PubMed  Google Scholar 

  172. Vaz SC, Oliveira F, Herrmann K, Veit-Haibach P. Nuclear medicine and molecular imaging advances in the 21st century. Br J Radiol. 2021;93:20200095.

    Article  Google Scholar 

  173. Bellotti C, Castagnola G, Tierno SM, Centanini F, Sparagna A, Vetrone I, Mezzetti G. Radioguided surgery with combined use of gamma probe and hand-held gamma camera for treatment of papillary thyroid cancer locoregional recurrences: a preliminary study. Eur Rev Med Pharmacol Sci. 2013;17:3362–6.

    CAS  PubMed  Google Scholar 

  174. Han YB, Song SH, Kang HG, Lee HY, Hong SJ. SiPM-based gamma detector with a central GRIN lens for a visible/NIRF/gamma multi-modal laparoscope. Opt Express. 2021;29:2364–77.

    Article  CAS  PubMed  Google Scholar 

  175. van Leeuwen FWB, Schottelius M, Brouwer OR, Vidal-Sicart S, Achilefu S, Klode J, et al. Trending: radioactive and fluorescent bimodal/hybrid tracers as multiplexing solutions for surgical guidance. J Nucl Med. 2020;61:13–9.

    Article  PubMed  Google Scholar 

  176. Fuerst B, Sprung J, Pinto F, Frisch B, Wendler T, Simon H, et al. First robotic SPECT for minimally invasive sentinel lymph node mapping. IEEE Trans Med Imaging. 2016;35:830–8.

    Article  PubMed  Google Scholar 

  177. Dell’Oglio P, Meershoek P, Maurer T, Wit EMK, van Leeuwen PJ, van der Poel HG, et al. A DROP-IN gamma probe for robot-assisted radioguided surgery of lymph nodes during radical prostatectomy. Eur Urol. 2021;79:124–32.

    Article  PubMed  Google Scholar 

  178. Collamati F, van Oosterom MN, De Simoni M, Faccini R, Mancini Terracciano C, Mirabelli R, et al. A Drop-In beta probe for robot-assited 68Ga-PSMA radioguided surgery: first ex vivo technology evaluation using prostate cancer specimens. EJNMMI Res. 2020;10:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato A. Valdés Olmos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Valdés Olmos, R.A., Orsini, F., Giammarile, F., Vidal-Sicart, S., Mariani, G. (2022). Radioguided Surgery: New Applications, Approaches, and Strategies. In: Volterrani, D., Erba, P.A., Strauss, H.W., Mariani, G., Larson, S.M. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-05494-5_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05494-5_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05493-8

  • Online ISBN: 978-3-031-05494-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics