Skip to main content

Comparison of Automated Operational Modal Analysis Algorithms for Long-Span Bridge Applications

  • Conference paper
  • First Online:
Topics in Modal Analysis & Parameter Identification, Volume 8

Abstract

Automated operational modal analysis allows operational modal analysis to be used without the need of a human operator to identify structural modes from a stabilisation diagram. Multiple algorithms for automating this procedure have been proposed, and this paper selects four (Magalhaes 2008, Reynders 2012, Yang 2019, and Kvåle 2020) and benchmarks them using experimental data from the monitored, and previously studied, Hardanger Bridge. It is shown that the Magalhaes 2008 and Kvåle 2020 algorithms have the highest detection rates of all the algorithms but that the Reynders 2012 and Yang 2019 algorithms have higher automation and lowest error rates, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos, J., Crémona, C., Silveira, P.: Automatic operational modal analysis of complex civil infrastructures. Struct. Eng. Int. (2020). https://doi.org/10.1080/10168664.2020.1749012

  2. Zhang, G., Ma, J., Chen, Z., Wang, R.: Automated eigensystem realisation algorithm for operational modal analysis. J. Sound Vib. 333(15), 3550–3563 (2014). https://doi.org/10.1016/j.jsv.2014.03.024

    Article  Google Scholar 

  3. Reynders, E., Houbrechts, J., De Roeck, G.: Fully automated (operational) modal analysis. Mech. Syst. Signal Process. 29, 228–250 (2012). https://doi.org/10.1016/j.ymssp.2012.01.007

    Article  Google Scholar 

  4. Yang, X.M., Yi, T.H., Qu, C.X., Li, H.N., Liu, H.: Automated eigensystem realization algorithm for operational modal identification of bridge structures. J. Aerosp. Eng. 32(2) (2019). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000984

  5. Magalhães, F., Cunha, Á., Caetano, E.: Online automatic identification of the modal parameters of a long span arch bridge. Mech. Syst. Signal Process. 23(2), 316–329 (2009). https://doi.org/10.1016/j.ymssp.2008.05.003

    Article  Google Scholar 

  6. Zini, G., Betti, M., Bartoli, G.: A quality-based automated procedure for operational modal analysis. Mech. Syst. Signal Process. 164(June 2021), 108173 (2022). https://doi.org/10.1016/j.ymssp.2021.108173

    Article  Google Scholar 

  7. Neu, E., Janser, F., Khatibi, A.A., Orifici, A.C.: Fully automated operational modal analysis using multi-stage clustering. Mech. Syst. Signal Process. 84, 308–323 (2017). https://doi.org/10.1016/j.ymssp.2016.07.031

    Article  Google Scholar 

  8. Bakir, P.G.: Automation of the stabilization diagrams for subspace based system identification. Expert Syst. Appl. 38(12), 14390–14397 (2011). https://doi.org/10.1016/j.eswa.2011.04.021

    Article  Google Scholar 

  9. Kvåle, K.A., Øiseth, O.: Automated operational modal analysis of an end-supported pontoon bridge using covariance-driven stochastic subspace identification and a density-based hierarchical clustering algorithm. IABMAS Conf. (1996) (2020)

    Google Scholar 

  10. Castellon, D.F., Fenerci, A., Øiseth, O.: A comparative study of wind-induced dynamic response models of long-span bridges using artificial neural networks, support vector regression and buffeting theory. J. Wind Eng. Ind. Aerodyn. 209(September 2020) (2021). https://doi.org/10.1016/j.jweia.2020.104484

  11. Petersen, Ø.W., Øiseth, O.: Finite element model updating of a long span suspension bridge. Geotech. Geol. Earthq. Eng. 47(December 2018), 335–344 (2019). https://doi.org/10.1007/978-3-319-78,187-7_25

    Article  Google Scholar 

  12. Fenerci A.: Doctoral thesis Full-scale investigation of the effects of wind turbulence characteristics on dynamic behavior of long-span cable-supported bridges in complex terrain Aksel Fenerci Full-scale investigation of the effects of wind turbulence characteristics. (2018).

    Google Scholar 

  13. Petersen, Ø.W., Øiseth, O., Lourens, E.M.: Estimation of the dynamic response of a slender suspension bridge using measured acceleration data. Procedia Eng. 199, 3047–3052 (2017). https://doi.org/10.1016/j.proeng.2017.09.547

    Article  Google Scholar 

  14. Fenerci, A., Øiseth, O.: Measured buffeting response of a long-span suspension bridge compared with numerical predictions based on design wind spectra. J. Struct. Eng. 143(9), 04017131 (2017). https://doi.org/10.1061/(asce)st.1943-541x.0001873

    Article  Google Scholar 

  15. Fenerci, A., Øiseth, O.: Full-Scale Measurements on the Hardanger Bridge During Strong Winds, pp. 237–245 (2016)

    Google Scholar 

  16. Fenerci, A., Øiseth, O.: The Hardanger Bridge monitoring project: Long-term monitoring results and implications on bridge design. Procedia Eng. 199, 3115–3120 (2017). https://doi.org/10.1016/j.proeng.2017.09.576

    Article  Google Scholar 

  17. Hermans, L., van der Auweraer, H.: Modal testing and analysis of structures under operational conditions: industrial applications. Mech. Syst. Signal Process. 13(2), 193–216 (1999)

    Article  Google Scholar 

  18. Pastor, M., Binda, M., Harčarik, T.: Modal assurance criterion. Procedia Eng. 48, 543–548 (2012). https://doi.org/10.1016/j.proeng.2012.09.551

    Article  Google Scholar 

  19. Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning, vol. 103, 2. Springer, New York (2009).

    Book  Google Scholar 

  20. Pappa, R.S., Elliott, K.B., Schenk, A.: Consistent-mode indicator for the eigensystem realization algorithm. J. Guid. Control. Dyn. 16(5), 852–858 (1993). https://doi.org/10.2514/3.21092

    Article  MATH  Google Scholar 

  21. Charbonnel, P.: Fuzzy-driven strategy for fully automated modal analysis: Application to the SMART2013 shaking-table test campaign. Mech. Syst. Signal Process. 152, 107388 (2021). https://doi.org/10.1016/j.ymssp.2020.107388

    Article  Google Scholar 

  22. Reynders, E., De Roeck, G.: Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis. Mech. Syst. Signal Process. 22(3), 617–637 (2008). https://doi.org/10.1016/j.ymssp.2007.09.004

    Article  Google Scholar 

  23. Deraemaeker, A., Reynders, E., De Roeck, G., Kullaa, J.: Vibration-based structural health monitoring using output-only measurements under changing environment. Mech. Syst. Signal Process. 22(1), 34–56 (2008). https://doi.org/10.1016/j.ymssp.2007.07.004

    Article  Google Scholar 

  24. Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd edn. O’Reilly Media, Inc. (2019)

    Google Scholar 

  25. Yaghoubi, V., Vakilzadeh, M.K., Abrahamsson, T.J.S.: Automated modal parameter estimation using correlation analysis and bootstrap sampling. Mech. Syst. Signal Process. 100, 289–310 (2018). https://doi.org/10.1016/j.ymssp.2017.07.004

    Article  Google Scholar 

  26. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-Based Clustering Based on Hierarchical Density Estimates BT- Advances in Knowledge Discovery and Data Mining, pp. 160–172 (2013)

    Book  Google Scholar 

  27. McInnes, L., Healy, J., Astels, S.: hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2(11) (2017). https://doi.org/10.21105/joss.00205

Download references

Acknowledgements

The authors would like to acknowledge the financial support to this research granted by the Norwegian Public Roads Authority (NPRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anno C. Dederichs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dederichs, A.C., Øiseth, O., Petersen, Ø.W., Kvåle, K.A. (2023). Comparison of Automated Operational Modal Analysis Algorithms for Long-Span Bridge Applications. In: Dilworth, B.J., Marinone, T., Mains, M. (eds) Topics in Modal Analysis & Parameter Identification, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-05445-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05445-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05444-0

  • Online ISBN: 978-3-031-05445-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics