Skip to main content

Turning OPM-MEG into a Wearable Technology

  • Chapter
  • First Online:
Flexible High Performance Magnetic Field Sensors

Abstract

This chapter explores the use of optically pumped magnetometers (OPMs) as a tool for magnetoencephalography (MEG). Conventional MEG systems use superconducting quantum interference devices (SQUIDs) to measure the femto-Tesla-level magnetic fields at the head surface that are generated by synchronised (dendritic) neural current flow in the brain. SQUIDs require cryogenic cooling to maintain a low operating temperature and must be bathed in liquid helium and held in a rigid helmet with thermal insulation to protect the participant. Scanners are therefore large, cumbersome, and one-size-fits-all; movement of the participant relative to the fixed array degrades quality of data. Conversely, OPMs exploit the spin properties of alkali atoms to measure local magnetic field. They can be constructed with an external surface at close to body temperature, while maintaining a small, light, and flexible form. In this chapter, we show how commercial OPMs can form the basis of a MEG system that allows sensors to get closer to the scalp surface, improving signal strength and spatial specificity. Further, OPMs allow the flexibility to adapt a sensor array to any head shape or size and even facilitate natural movement throughout MEG acquisition. We explain why OPMs are emerging as a stand-out replacement for SQUIDs and how nascent sensor designs enable multi-axis measurements. We look at the practical requirements for designing sensor arrays that facilitate high spatial resolution imaging. We further describe how allowing movement requires additional background magnetic field suppression. Finally, we review recent literature to demonstrate how OPM-MEG has been used to enable novel neuroscientific experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baillet, S. (2017). Magnetoencephalography for brain electrophysiology and imaging. Nature neuroscience, 20, 327–339.

    Article  CAS  PubMed  Google Scholar 

  2. Barry, D. N., Tierney, T. M., Holmes, N., Boto, E., Roberts, G., Leggett, J., Bowtell, R., Brookes, M. J., Barnes, G. R., & Maguire, E. A. (2019). Imaging the human hippocampus with optically-pumped magnetoencephalography. NeuroImage, 203, 116192.

    Article  PubMed  Google Scholar 

  3. Barry, J. F., Schloss, J. M., Bauch, E., Turner, M. J., Hart, C. A., Pham, L. M., & Walsworth, R. L. (2020). Sensitivity optimization for NV-diamond magnetometry. Reviews of Modern Physics, 92, 015004.

    Article  CAS  Google Scholar 

  4. Berger, H. (1929). Über das elektroenkephalogramm des menschen. Archiv für psychiatrie und nervenkrankheiten, 87, 527–570.

    Article  Google Scholar 

  5. Borna, A., Carter, T. R., Colombo, A. P., Jau, Y.-Y., Mckay, J., Weisend, M., Taulu, S., Stephen, J. M., & Schwindt, P. D. (2020). Non-invasive functional-brain-imaging with an OPM-based magnetoencephalography system. Plos one, 15, e0227684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borna, A., Carter, T. R., Goldberg, J. D., Colombo, A. P., Jau, Y.-Y., Berry, C., Mckay, J., Stephen, J., Weisend, M., & Schwindt, P. D. (2017). A 20-channel magnetoencephalography system based on optically pumped magnetometers. Physics in Medicine & Biology, 62, 8909.

    Article  CAS  Google Scholar 

  7. Boto, E., Hill, R. M., Rea, M., Holmes, N., Seedat, Z. A., Leggett, J., Shah, V., Osborne, J., Bowtell, R., & Brookes, M. J. (2021). Measuring functional connectivity with wearable MEG. NeuroImage, 230, 117815.

    Article  PubMed  Google Scholar 

  8. Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., Munoz, L. D., Mullinger, K. J., Tierney, T. M., Bestmann, S., Barnes, G. R., Bowtell, R., & Brookes, M. J. (2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555, 657–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boto, E., Meyer, S. S., Shah, V., Alem, O., Knappe, S., Kruger, P., Fromhold, T. M., Lim, M., Glover, P. M., & Morris, P. G. (2017). A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. NeuroImage, 149, 404–414.

    Article  PubMed  Google Scholar 

  10. Boto, E., Seedat, Z. A., Holmes, N., Leggett, J., Hill, R. M., Roberts, G., Shah, V., Fromhold, T. M., Mullinger, K. J., & Tierney, T. M. (2019). Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography. NeuroImage, 201, 116099.

    Article  PubMed  Google Scholar 

  11. Brookes, M. J., Boto, E., Rea, M., Shah, V., Osborne, J., Holmes, N., Hill, R. M., Leggett, J., Rhodes, N., & Bowtell, R. (2021). Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage, 118025.

    Google Scholar 

  12. Carlson, J., Derby, K., Hawryszko, K., & Weideman, M. (1992). Design and evaluation of shielded gradient coils. Magnetic resonance in medicine, 26, 191–206.

    Article  CAS  PubMed  Google Scholar 

  13. Chatzidrosos, G., Wickenbrock, A., Bougas, L., Leefer, N., Wu, T., Jensen, K., Dumeige, Y., & Budker, D. (2017). Miniature Cavity-Enhanced Diamond Magnetometer. Physical Review Applied, 8, 044019.

    Article  Google Scholar 

  14. Cohen, D. (1968). Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents. Science, 161, 784–786.

    Article  CAS  PubMed  Google Scholar 

  15. Cohen, D. (1970). Large-volume conventional magnetic shields. Revue de Physique Appliquee, 5, 53–58.

    Article  Google Scholar 

  16. Colombo, A. P., Carter, T. R., Borna, A., Jau, Y.-Y., Johnson, C. N., Dagel, A. L., & Schwindt, P. D. (2016). Four-channel optically pumped atomic magnetometer for magnetoencephalography. Optics express, 24, 15403–15416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dang, H. B., Maloof, A. C., & Romalis, M. V. (2010). Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Applied Physics Letters, 97, 151110.

    Article  CAS  Google Scholar 

  18. Fagaly, R. (2006). Superconducting quantum interference device instruments and applications. Review of scientific instruments, 77, 101101.

    Article  CAS  Google Scholar 

  19. Gascoyne, L. E., Brookes, M. J., Rathnaiah, M., Katshu, M. Z. U. H., Koelewijn, L., Williams, G., Kumar, J., Walters, J. T., Seedat, Z. A., & Palaniyappan, L. (2021). Motor-related oscillatory activity in schizophrenia according to phase of illness and clinical symptom severity. NeuroImage: Clinical, 29, 102524.

    Article  Google Scholar 

  20. Hanle, W. (1924). Über magnetische beeinflussung der polarisation der resonanzfluoreszenz. Zeitschrift für Physik, 30, 93–105.

    Article  CAS  Google Scholar 

  21. Haueisen, J., Fleissig, K., Strohmeier, D., Elsarnagawy, T., Huonker, R., Liehr, M., & Witte, O. (2012). Reconstruction of quasi-radial dipolar activity using three-component magnetic field measurements. Clinical neurophysiology, 123, 1581–1585.

    Article  CAS  PubMed  Google Scholar 

  22. Hill, R. M., Boto, E., Holmes, N., Hartley, C., Seedat, Z. A., Leggett, J., Roberts, G., Shah, V., Tierney, T. M., Woolrich, M. W., Stagg, C. J., Barnes, G. R., Bowtell, R., SLATER, R., & Brookes, M. J. (2019). A tool for functional brain imaging with lifespan compliance. Nature Communications, 10, 4785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hill, R. M., Boto, E., Rea, M., Holmes, N., Leggett, J., Coles, L. A., Papastavrou, M., Everton, S. K., Hunt, B. A., & Sims, D. (2020). Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. NeuroImage, 219, 116995.

    Article  PubMed  Google Scholar 

  24. Hoburg, J. (1995). Principles of quasistatic magnetic shielding with cylindrical and spherical shields. IEEE Transactions on electromagnetic compatibility, 37, 574–579.

    Article  Google Scholar 

  25. Holmes, N., Leggett, J., Boto, E., Roberts, G., Hill, R. M., Tierney, T. M., Shah, V., Barnes, G. R., Brookes, M. J., & Bowtell, R. (2018). A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography. NeuroImage, 181, 760–774.

    Article  PubMed  Google Scholar 

  26. Holmes, N., Tierney, T. M., Leggett, J., Boto, E., Mellor, S., Roberts, G., Hill, R. M., Shah, V., Barnes, G. R., & Brookes, M. J. (2019). Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography. Scientific reports, 9, 1–15.

    Article  CAS  Google Scholar 

  27. Hoshi, Y., & Tamura, M. (1993). Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neuroscience letters, 150, 5–8.

    Article  CAS  PubMed  Google Scholar 

  28. Huang, M.-X., Nichols, S., Baker, D. G., Robb, A., Angeles, A., Yurgil, K. A., Drake, A., Levy, M., Song, T., & Mclay, R. (2014). Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. NeuroImage: Clinical, 5, 109–119.

    Article  Google Scholar 

  29. Iivanainen, J., Stenroos, M., & Parkkonen, L. (2017). Measuring MEG closer to the brain: Performance of on-scalp sensor arrays. NeuroImage, 147, 542–553.

    Article  PubMed  Google Scholar 

  30. Iivanainen, J., Zetter, R., Grön, M., Hakkarainen, K., & Parkkonen, L. (2019). On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers. Neuroimage, 194, 244–258.

    Article  PubMed  Google Scholar 

  31. Iivanainen, J., Zetter, R., & Parkkonen, L. (2020). Potential of on-scalp MEG: Robust detection of human visual gamma-band responses. Human brain mapping, 41, 150–161.

    Article  PubMed  Google Scholar 

  32. Jiang, X., Bian, G.-B., & Tian, Z. (2019). Removal of artifacts from EEG signals: a review. Sensors, 19, 987.

    Article  PubMed Central  Google Scholar 

  33. Josephson, B. D. (1962). Possible new effects in superconductive tunnelling. Physics Letters, 1, 251.

    Article  Google Scholar 

  34. Josephson, B. D. (1974). The discovery of tunnelling supercurrents. Reviews of Modern Physics, 46, 251–254.

    Article  Google Scholar 

  35. Kelly, H. (1946). Degaussing. Nature Publishing Group.

    Book  Google Scholar 

  36. Lee, Y., Kwon, H., Yu, K., Kim, J., Lee, S., Kim, M., & Kim, K. (2017). Low-noise magnetoencephalography system cooled by a continuously operating reliquefier. Superconductor Science and Technology, 30, 084003.

    Article  CAS  Google Scholar 

  37. Lin, C. H., Tierney, T. M., Holmes, N., Boto, E., Leggett, J., Bestmann, S., Bowtell, R., Brookes, M. J., Barnes, G. R., & Miall, R. C. (2019). Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum. The Journal of physiology, 597, 4309–4324.

    Article  CAS  PubMed  Google Scholar 

  38. Messaritaki, E., Koelewijn, L., Dima, D. C., Williams, G. M., Perry, G., & Singh, K. D. (2017). Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity. NeuroImage, 159, 302–324.

    Article  PubMed  Google Scholar 

  39. Meyer, S. S., Bonaiuto, J., Lim, M., Rossiter, H., Waters, S., Bradbury, D., Bestmann, S., Brookes, M., Callaghan, M. F., Weiskopf, N., & Barnes, G. R. (2017). Flexible head-casts for high spatial precision MEG. Journal of Neuroscience Methods, 276, 38–45.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci, 7, 138.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nardelli, N., Perry, A., Krzyzewski, S., & Knappe, S. (2020). A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography. EPJ Quantum Technology, 7, 11.

    Article  Google Scholar 

  42. Nurminen, J., Taulu, S., Nenonen, J., Helle, L., Simola, J., & Ahonen, A. (2013). Improving MEG performance with additional tangential sensors. IEEE Transactions on Biomedical Engineering, 60, 2559–2566.

    Article  PubMed  Google Scholar 

  43. Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic resonance in medicine, 14, 68–78.

    Article  CAS  PubMed  Google Scholar 

  44. Öisjöen, F., Schneiderman, J. F., Figueras, G. A., Chukharkin, M. L., Kalabukhov, A., Hedström, A., Elam, M., & Winkler, D. (2012). High-Tc superconducting quantum interference device recordings of spontaneous brain activity: Towards high-Tc magnetoencephalography. Applied Physics Letters, 100, 132601.

    Article  CAS  Google Scholar 

  45. Okada, Y., Hämäläinen, M., Pratt, K., Mascarenas, A., Miller, P., Han, M., Robles, J., Cavallini, A., Power, B., Sieng, K., Sun, L., Lew, S., Doshi, C., Ahtam, B., Dinh, C., Esch, L., Grant, E., Nummenmaa, A., & Paulson, D. (2016). BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research. Rev Sci Instrum, 87, 094301.

    Article  PubMed  CAS  Google Scholar 

  46. Osborne, J., Orton, J., Alem, O., & Shah, V. Fully integrated standalone zero field optically pumped magnetometer for biomagnetism. Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI, 2018. International Society for Optics and Photonics, 105481G.

    Google Scholar 

  47. Pratt, E. J., Ledbetter, M., Jiménez-Martínez, R., Shapiro, B., Solon, A., Iwata, G. Z., Garber, S., Gormley, J., Decker, D., & Delgadillo, D. Kernel Flux: A whole-head 432-magnetometer optically-pumped magnetoencephalography (OP-MEG) system for brain activity imaging during natural human experiences. Optical and Quantum Sensing and Precision Metrology, 2021. International Society for Optics and Photonics, 1170032.

    Google Scholar 

  48. Roberts, G., Holmes, N., Alexander, N., Boto, E., Leggett, J., Hill, R. M., Shah, V., Rea, M., Vaughan, R., & Maguire, E. A. (2019a). Towards OPM-MEG in a virtual reality environment. NeuroImage, 199, 408–417.

    Article  PubMed  Google Scholar 

  49. Roberts, T. P., Matsuzaki, J., Blaskey, L., Bloy, L., Edgar, J. C., Kim, M., Ku, M., Kuschner, E. S., & Embick, D. (2019b). Delayed M50/M100 evoked response component latency in minimally verbal/nonverbal children who have autism spectrum disorder. Molecular autism, 10, 1–10.

    Article  CAS  Google Scholar 

  50. Rondin, L., Tetienne, J. P., Hingant, T., Roch, J. F., Maletinsky, P., & Jacques, V. (2014). Magnetometry with nitrogen-vacancy defects in diamond. Reports on Progress in Physics, 77, 056503.

    Article  CAS  PubMed  Google Scholar 

  51. Sander, T., Preusser, J., Mhaskar, R., Kitching, J., Trahms, L., & Knappe, S. (2012). Magnetoencephalography with a chip-scale atomic magnetometer. Biomedical optics express, 3, 981–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shah, V., & Romalis, M. (2009). Spin-exchange relaxation-free magnetometry using elliptically polarized light. Physical Review A, 80, 013416.

    Article  CAS  Google Scholar 

  53. Shah, V. K., & Wakai, R. T. (2013). A compact, high performance atomic magnetometer for biomedical applications. Physics in Medicine & Biology, 58, 8153.

    Article  Google Scholar 

  54. Silver, A., & Zimmerman, J. (1965). Quantum transitions and loss in multiply connected superconductors. Physical Review Letters, 15, 888.

    Article  Google Scholar 

  55. Tierney, T. M., Levy, A., Barry, D. N., Meyer, S. S., Shigihara, Y., Everatt, M., Mellor, S., Lopez, J. D., Bestmann, S., & Holmes, N. (2021). Mouth magnetoencephalography: A unique perspective on the human hippocampus. NeuroImage, 225, 117443.

    Article  PubMed  Google Scholar 

  56. Troebinger, L., López, J. D., Lutti, A., Bradbury, D., Bestmann, S., & Barnes, G. (2014). High precision anatomy for MEG. Neuroimage, 86, 583–591.

    Article  PubMed  Google Scholar 

  57. Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of virtual reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50, 862–869.

    Article  PubMed  Google Scholar 

  58. Vivekananda, U., Mellor, S., Tierney, T. M., Holmes, N., Boto, E., Leggett, J., Roberts, G., Hill, R. M., Litvak, V., & Brookes, M. J. (2020). Optically pumped magnetoencephalography in epilepsy. Annals of clinical and translational neurology, 7, 397–401.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zetter, R., Iivanainen, J., & Parkkonen, L. (2019). Optical Co-registration of MRI and On-scalp MEG. Scientific Reports, 9, 5490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Rhodes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rhodes, N. et al. (2022). Turning OPM-MEG into a Wearable Technology. In: Labyt, E., Sander, T., Wakai, R. (eds) Flexible High Performance Magnetic Field Sensors. Springer, Cham. https://doi.org/10.1007/978-3-031-05363-4_11

Download citation

Publish with us

Policies and ethics