Skip to main content

Circuits, Membranes, and Pumps

  • Chapter
  • First Online:
Extracorporeal Membrane Oxygenation for Adults

Part of the book series: Respiratory Medicine ((RM))

  • 1166 Accesses

Abstract

The ECLS circuit is composed of a variety of specialized devices that must function both separately and in concert to support the patient. As each case and patient demand different solutions, circuits vary in their features. This chapter provides a fund of knowledge regarding these components: what function they provide, the general principles involved, and how to identify device compromise or failure. It therefore serves as a guide for building a circuit for each patient; balancing the various needs at hand requires an understanding of such matters. Also discussed are priming of the circuit and patient-circuit interactions such as drug adsorption and inflammation due to blood-surface interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khoshbin E, Dux AEW, Killer H, Sosnowski AW, Firmin RK, Peek GJ. A comparison of radiographic signs of pulmonary inflammation during ECMO between silicon and poly-methyl pentene oxygenators. Perfusion. 2007;22:15–22.

    Article  Google Scholar 

  2. Peek GJ, Firmin RK. The inflammatory and coagulative response to prolonged extracorporeal membrane oxygenation. ASAIO J. 1999;45(4):250–63.

    Article  CAS  Google Scholar 

  3. Lehle K, Philipp A, Gleich O, et al. Efficiency in extracorporeal membrane oxygenation-cellular deposits on polymethylpentene membranes increase resistance to blood flow and reduce gas exchange capacity. ASAIO J. 2008;54(6):612–7. https://doi.org/10.1097/MAT.0b013e318186a807.

    Article  CAS  PubMed  Google Scholar 

  4. Wildschut ED, Ahsman MJ, Allegaert K, Mathot RAA, Tibboel D. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36:2109–16.

    Article  CAS  Google Scholar 

  5. Lawson DS, Ing R, Cheifetz IM, et al. Hemolytic characteristics of three commercially available centrifugal blood pumps. Pediatr Crit Care Med. 2005;6(5):573–7. https://doi.org/10.1097/01.pcc.0000163282.63992.13.

    Article  PubMed  Google Scholar 

  6. Burnside J, Gomez D, Preston TJ, Olshove VF, Phillips A. In-vitro quantification of gaseous microemboli in two extracorporeal life support circuits. J Extra Corpor Technol. 2011;43:123–9.

    PubMed  PubMed Central  Google Scholar 

  7. Yee S, Qiu F, Su X, et al. Evaluation of HL-20 roller pump and Rotaflow centrifugal pump on perfusion quality and gaseous microemboli delivery. Artif Organs. 2010;34(11):937–43. https://doi.org/10.1111/j.1525-1594.2010.01079.x.

    Article  PubMed  Google Scholar 

  8. Lawson DS, Lawson AF, Walczak R, et al. North American neonatal extracorporeal membrane oxygenation (ECMO) devices and team roles: 2008 survey results of Extracorporeal Life Support Organization (ELSO) centers. J Extra Corpor Technol. 2008;40(3):166–74.

    PubMed  PubMed Central  Google Scholar 

  9. Lawson DS, Walczak R, Lawson AF, et al. North American neonatal extracorporeal membrane oxygenation (ECMO) devices: 2002 survey results. J Extra Corpor Technol. 2004;36(1):16–21.

    PubMed  Google Scholar 

  10. Drinker PA, Bartlett RH, Rishon MB, Noyes BS. Augmentation of membrane gas transfer by induced secondary flows. Surgery. 1969;66(4):775–81.

    CAS  PubMed  Google Scholar 

  11. Diller TE, Mikic BB, Drinker PA. Shear-induced augmentation of oxygen transfer in blood. J Biomech Eng. 1980;102:67–72.

    Article  CAS  Google Scholar 

  12. Gaylor JDS. Membrane oxygenators: current developments in design and application. J Biomed Eng. 1988;10:541–7.

    Article  CAS  Google Scholar 

  13. Mueller T, Lubnow M, Philipp A, et al. Extracorporeal pumpless interventional lung assist in clinical practice: determinants of efficacy. Eur Respir J. 2009;33:551–9.

    Article  Google Scholar 

  14. Johnson P, Frohlich S, Westbrook A. Use of extracorporeal membrane lung assist device (Novalung) in H1N1 patients. J Card Surg. 2011;26(4):449–52. https://doi.org/10.1111/j.1540-8191.2011.01261.x.

    Article  PubMed  Google Scholar 

  15. Kolobow T, Bowman RL. Construction and evaluation of an alveolar membrane artificial heart-lung. ASAIO J. 1963;9:238–43.

    CAS  Google Scholar 

  16. Khoshbin E, Roberts N, Harvey C, et al. Poly-methyl pentene oxygenators have improved gas exchange capability and reduced transfusion requirements in adult extracorporeal membrane oxygenation. ASAIO J. 2005;51(3):281–7. https://doi.org/10.1097/01.mat.0000159741.33681.f1.

    Article  CAS  PubMed  Google Scholar 

  17. Montoya JP, Shanley CJ, Merz SI, Bartlett RH. Plasma leakage through microporous membranes: role of phospholipids. ASAIO J. 1992;38(M399-M405):M399–405.

    Article  CAS  Google Scholar 

  18. Eash HJ, Jones HM, Hattler BG, Federspiel WJ. Evaluation of plasma resistant hollow fiber membranes for artificial lungs. ASAIO J. 2004;50(5):491–7. https://doi.org/10.1097/01.mat.0000138078.04558.fe.

    Article  PubMed  Google Scholar 

  19. Puis L, Ampe L, Hertleer R. Case report: plasma leakage in a polymethylpentene oxygenator during extracorporeal life support. Perfusion. 2009;24(1):51–2. https://doi.org/10.1177/0267659109106294.

    Article  CAS  PubMed  Google Scholar 

  20. Antonucci E, Lamanna I, Fagnoul D, Vincent JL, De Backer D, Silvio TF. The impact of renal failure and renal replacement therapy on outcome during extracorporeal membrane oxygenation therapy. Artif Organs. 2016;40(8):746–54. https://doi.org/10.1111/aor.12695.

    Article  CAS  PubMed  Google Scholar 

  21. Ostermann M, Connor M Jr, Kashani K. Continuous renal replacement therapy during extracorporeal membrane oxygenation: why, when and how? Curr Opin Crit Care. 2018;24(6):493–503. https://doi.org/10.1097/MCC.0000000000000559.

    Article  PubMed  Google Scholar 

  22. Fosse E, Moen O, Johnson E, et al. Reduced complement and granulocyte activation with heparin-coated cardiopulmonary bypass. Ann Thorac Surg. 1994;58:472–7.

    Article  CAS  Google Scholar 

  23. Jansen PGM, Velthius H, Huybregts RAJM, et al. Reduced complement activation and improved postoperative performance after CPB with heparin-coated circuits. J Thorac Cardiovasc Surg. 1995;110:829–34.

    Article  CAS  Google Scholar 

  24. Pekna M, Hagman L, Halden E, Nilsson UR, Nilsson B, Thelin S. Complement activation during cardiopulmonary bypass: effects of immobilized heparin. Ann Thorac Surg. 1994;58:421–4.

    Article  CAS  Google Scholar 

  25. Gravlee GP. Heparin-coated cardiopulmonary bypass circuits. J Cardiothorac Vasc Anesth. 1994;8(2):213–22.

    Article  CAS  Google Scholar 

  26. Gu YJ, van Oeveren W, Akkerman C, Boonstra PW, Huyzen RJ, Wildevuur CRH. Heparin-coated circuits reduce the inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 1993;55:917–22.

    Article  CAS  Google Scholar 

  27. Ranucci M, Ballotta A, Kandil H, et al. Bivalrudin-based versus conventional heparin anticoagulation for postcardiotomy extracorporeal membrane oxygenation. Crit Care. 2011;15:R275.

    Article  Google Scholar 

  28. Silvetti S. Do we need heparin coating for extracorporeal membrane oxygenation? New concepts and controversial positions about coating surfaces of extracorporeal circuits. Artif Organs. 2015;39:176–9.

    Article  CAS  Google Scholar 

  29. Cuker A. Clinical and laboratory diagnosis of heparin-induced thrombocytopenia: an integrated approach. Semin Thromb Hemost. 2014;40:106–14.

    CAS  PubMed  Google Scholar 

  30. Pollak U, Yacobobich J, Tamary H, Dagan O, Manor-Shulman O. Heparin-induced thrombocytopenia and extracorporeal membrane oxygenation: a case report and review of the literature. J Extra Corpor Technol. 2011;43(1):5–12.

    PubMed  PubMed Central  Google Scholar 

  31. Beiderlinden M, Treschan T, Gorlinger K, Peters J. Argatroban in extracorporeal membrane oxygenation. Artif Organs. 2007;31(6):461–5.

    Article  CAS  Google Scholar 

  32. Pappalardo F, Maj G, Scandroglio A, Sampietro F, Zangrillo A, Koster A. Bioline heparin-coated ECMO with bivalirudin anticoagulation in a patient with acute heparin-induced thrombocytopenia: the immune reaction appeared to continue unabated. Perfusion. 2009;24:135–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the following content consultants:

Kristina L. Rudolph, B.S.N.; Jennifer Crumley, M.S.N.; Tom Rath, C.C.P.; and Elizabeth Moore, M.S.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley H. Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosen, B.H. (2022). Circuits, Membranes, and Pumps. In: Schmidt, G.A. (eds) Extracorporeal Membrane Oxygenation for Adults. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-031-05299-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05299-6_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-05298-9

  • Online ISBN: 978-3-031-05299-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics