Skip to main content

Electrochemical Sensors Based on Molecularly Imprinted Polymers and Different Carbon Materials for Antibiotics Detection

  • Conference paper
  • First Online:
New Technologies, Development and Application V (NT 2022)

Abstract

This paper is an overview of recent advances and new trends in electrochemical sensors for the detection of a wide range of antibiotics such as tetracyclines, macrolides, and many others. Given the increasing presence of antibiotics in various media from food, drink, rivers, it proved necessary to develop antibiotic sensors that can be applied easily and quickly in-situ, and which will be highly sensitive and selective, all with the aim of controlling food safety and improving human health. The electrochemical sensors studied in this paper refer to molecularly imprinted polymers, as well as those based on glassy carbon electrode, functionalized multi-walled carbon nanotubes, graphene oxide, nanodiamond, electrospun polymeric fibers of PBAT/PLA functionalized with functionalized carbon nanotubes. These materials allow fast and highly selective determination of antibiotics from various biological fluids (urine, plasma, serum, tears), water and food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, C., et al.: Efficacy of carbonaceous nanocomposites for sorbingionizable antibiotic sulfamethazine from aqueous solution. Water Res. 95, 103–112 (2016). https://doi.org/10.1016/j.watres.2016.03.014

  2. Ji, B., et al.: Vertically aligned ZnO@ZnSNanorod chip with improved photocatalytic activity for antibiotics degradation. ACS Appl. Nano Mater. 1, 793–799 (2018). https://doi.org/10.1021/acsanm.7b00242

  3. Binh, V.N., Dang, N., Anh, N.T.K., Thai, P.K.: Antibiotics in the aquatic environment of Vietnam: sources, concentrations, risk and control strategy. Chemosphere 197, 438–450 (2018). https://doi.org/10.1016/j.chemosphere.2018.01.061

    Article  Google Scholar 

  4. Bratovcic, A.: Photocatalytic degradation of organic compounds in wastewaters. Technologica Acta 11(2), 17–24 (2019). https://doi.org/10.5281/zenodo.2563022

  5. Bratovcic, A.: TiO2 – based nanocomposites for photocatalytic degradation of dyes and drugs. In: Karabegović, I. (ed.) NT 2021. LNNS, vol. 233, pp. 851–857. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75275-0_93

    Chapter  Google Scholar 

  6. Bratovcic, A.: New solar photocatalytic technologies for water purification as support for the implementation of industry 4.0. In: Karabegović, I., Kovačević, A., Banjanović-Mehmedović, L., Dašić, P. (eds.) Handbook of Research on Integrating Industry 4.0 in Business and Manufacturing, pp. 385–412. IGI Global, Hershey (2020a). https://doi.org/10.4018/978-1-7998-2725-2.ch017

  7. Na, G., et al.: The effect of environmental factors and migration dynamics on the prevalence of antibiotic-resistant Escherichia coli in estuary environments. Sci. Rep. 8, 1663 (2018). https://doi.org/10.1038/s41598-018-20077-x

    Article  Google Scholar 

  8. Conzuelo, F., Gamella, M., Campuzano, S., Reviejo, A.J., Pingarrón, J.M.: Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk. Analytica Chimica Acta 737, 29–36 (2012). https://doi.org/10.1016/j.aca.2012.05.051

  9. Zhou, Q., Zhang, Y., Wang, N., Zhu, L., Tang, H.: Analysis of tetracyclines in chicken tissues and dung using LC–MS coupled with ultrasound-assisted enzymatic hydrolysis. Food Control 46, 324–331 (2014). https://doi.org/10.1016/j.foodcont.2014.05.015

  10. Kushikawa, R.T., Silva, M.R., Angelo, A.C.D., Teixeira, M.F.S.: Construction of an electrochemical sensing platform based on platinum nanoparticles supported on carbon for tetracycline determination. Sens. Actuators B Chem. 228, 207–213 (2016). https://doi.org/10.1016/j.snb.2016.01.009

  11. European Commission: First Watch List for emerging water pollutants (2016). https://ec.europa.eu/jrc/en/news/first-watch-list-emerging-water-pollutants

  12. Jafari, S., Dehghani, M., Nasirizadeh, N., Baghersad, M.H., Azimzadeh, M.: Label-free electrochemical detection of Cloxacillin antibiotic in milk samples based on molecularly imprinted polymer and graphene oxide-gold nanocomposite. Measurement 145, 22–29 (2019). https://doi.org/10.1016/j.measurement.2019.05.068

  13. Jelic, D., Antolovic, R.: From erythromycin to azithromycin and new potential ribosome-binding antimicrobials. Antibiot.-Basel. 5 (2016). https://doi.org/10.3390/antibiotics5030029

  14. Michael-Kordatou, I., Iacovou, M., Frontistis, Z., Hapeshi, E., Dionysiou, D.D., Fatta-Kassinos, D.: Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation. Water Res. 85, 346–358 (2015). https://doi.org/10.1016/j.watres.2015.08.050

    Article  Google Scholar 

  15. Neghi, N., Krishnan, N.R., Kumar, M.: Analysis of metronidazole removal and micro-toxicity in photolytic systems: effects of persulfate dosage, anions and reactor operation-mode, J. Environ. Chem. Eng. 6, 754–761 (2018). https://doi.org/10.1016/j.jece.2017.12.072

  16. Podder, V., Sadiq, N.M.: Levofloxacin. In: StatPearls [Internet]. Treasure Island (FL). StatPearls Publishing; January 2021. https://www.ncbi.nlm.nih.gov/books/NBK545180/. Accessed 24 Dec 2020

  17. Janin, Y.L.: Antituberculosis drugs: ten years of research. Bioorg. Med. Chem. 15(7), 2479–2513 (2007). https://doi.org/10.1016/j.bmc.2007.01.030. Epub 2007 Jan 19 PMID: 17291770

    Article  Google Scholar 

  18. Mishra, M., Mishra, B.: Mucoadhesive microparticles as potential carriers in inhalation delivery of doxycycline hyclate: a comparative study. Acta Pharmaceutica Sinica B 2(5), 518–526 (2012). https://doi.org/10.1016/j.apsb.2012.05.001

    Article  Google Scholar 

  19. García-Galán, M.J., Díaz-Cruz, M.S., Barceló, D.: Identification and determination of metabolites and degradation products of sulfonamide antibiotics. Trac-Trend. Anal. Chem. 27(11), 1008–1022 (2008). https://doi.org/10.1016/j.trac.2008.10.001

  20. Mathur, S., Fuchs, A., Bielicki, J., Van Den Anker, J., Sharland, M.: Antibiotic use for community-acquired pneumonia in neonates and children: WHO evidence review. Paediatr. Int. Child Health 38, S66–S75 (2018)

    Article  Google Scholar 

  21. Fernandez, J., et al.: Release mechanisms of urinary tract antibiotics when mixed with bioabsorbable polyesters. Mater. Sci. Eng. C 93, 529–538 (2018)

    Article  Google Scholar 

  22. Dehdashtian, S., Shamsipur, M., Gholivand, M.B.: Fabrication of a novel electrochemical sensor based on an electrosynthesized indolyldihydroxyquinone as a bio-based modifier for sensitive and selective direct electrochemical determination of tryptophan. J. Electroanal. Chem. 780, 119–125 (2016). https://doi.org/10.1016/j.jelechem.2016.09.007

    Article  Google Scholar 

  23. Stoian, I.-A.I., et al.: Biomimetic electrochemical sensor for the highly selective detection of azithromycin in biological samples. Biosens. Bioelectron. 155, 112098 (2020). https://doi.org/10.1016/j.bios.2020.112098

  24. Bratovcic, A.: Recent developments on metal oxide - based gas sensors for environmental pollution control. In: Karabegović, I. (ed.) NT 2021. LNNS, vol. 233, pp. 952–963. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75275-0_105

    Chapter  Google Scholar 

  25. Afkhami, A., Ghaedi, H., Madrakian, T., Nematollahi, D., Mokhtari, B.: Electro-oxidation and voltammetric determination of oxymetholone in the presence of mestanolone using glassy carbon electrode modified with carbon nanotubes. Talanta 121, 1–8 (2014). https://doi.org/10.1016/j.talanta.2013.12.047

  26. Bratovcic, A.: Nanocomposite hydrogels reinforced by carbon nanotubes. Int. J. Eng. Res. Appl. 10(5), (Series-IV), 30–41(2020b). https://doi.org/10.9790/9622-1005043041

  27. Haupt, K., Mosbach, K.: Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 2495–2504 (2000). https://doi.org/10.1021/cr990099w

  28. Ulbricht, M.: Membrane separations using molecularly imprinted polymers, J. Chromatogr. B 804, 113–125 (2004). https://doi.org/10.1016/j.jchromb.2004.02.007

  29. Wang, H., Yao, S., Liu, Y., Wei, S., Su, J., Hu, G.: Molecularly imprinted electrochemical sensor based on Au nanoparticles in carboxylated multi-walled carbon nanotubes for sensitive determination of olaquindox in food and feedstuffs. Biosens. Bioelectron. 87, 417–421 (2017). https://doi.org/10.1016/j.bios.2016.08.092

  30. Zhang, L., Wen, Y.-P., Yao, Y.-Y., Wang, Z.-F., Duan, X.-M., Xu, J.-K.: Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A. Chin. Chem. Lett. 25(4), 517–522 (2014). https://doi.org/10.1016/j.cclet.2013.12.020

  31. Carabineiro, S.A.C., Thavorn-Amornsri, T., Pereira, M.F.R., Figueiredo, J.L.: Adsorption of ciprofloxacin on surface-modified carbon materials. Water Res. 45(15), 4583–4591 (2011). https://doi.org/10.1016/j.watres.2011.06.008

    Article  Google Scholar 

  32. Sheng, G.D., et al.: Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 178(1), 505–516 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.110

  33. Xu, Z., Jiang, X., Liu, S., Yang, M.: Sensitive and selective molecularly imprinted electrochemical sensor based on multi-walled carbon nanotubes for doxycycline hyclate determination. Chin. Chem. Lett. 31(1), 185–188 (2020). https://doi.org/10.1016/j.cclet.2019.04.026

    Article  Google Scholar 

  34. Ayankojo, A.G., Reut, J., Ciocan, V., Öpik, A., Syritski, V.: Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 209 (2020). https://doi.org/10.1016/j.talanta.2019.120502

  35. Wang, Y., et al.: CuCo2O4/N-doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: preparation, characterization and detection of metronidazole. Biosens. Bioelectron. 142, 111483 (2019). https://doi.org/10.1016/j.bios.2019.111483

    Article  Google Scholar 

  36. Gong, F.-C., Zhang, X.-B., Guo, C.-C., Shen, G.-L., Yu, R.-Q.: Amperometric metronidazole sensor based on the supermolecular recognition by metalloporphyrin incorporated in carbon paste electrode. Sensors 3(4), 91–100 (2003)

    Article  Google Scholar 

  37. Sun, Y., et al.: A selective molecularly imprinted electrochemical sensor with GO@COF signal amplification for the simultaneous determination of sulfadiazine and acetaminophen. Sens. Actuators B Chem. 300, 126993 (2019). https://doi.org/10.1016/j.snb.2019.126993

    Article  Google Scholar 

  38. Ensafi, A.A., Nasr-Esfahani, P., Rezaei, B.: Metronidazole determination with an extremely sensitive and selective electrochemical sensor based on graphene nanoplatelets and molecularly imprinted polymers on graphene quantum dots. Sens. Actuators B Chem. 270, 192–199 (2018). https://doi.org/10.1016/j.snb.2018.05.024

  39. Du, F., Zhu, L., Dai, L.: Carbon nanotube-based electrochemical biosensors. Biosens. Based Nanomater. Nanodevices pp. 273–293 (2017). https://doi.org/10.1201/b16234

  40. Abellán-Llobregat, A., González-Gaitán, C., Vidal, L., Canals, A., Morallón, E.: Portable electrochemical sensor based on 4-aminobenzoic acid-functionalized herringbone carbon nanotubes for the determination of ascorbic acid and uric acid in human fluids. Biosens. Bioelectron. 109, 123–131 (2018). https://doi.org/10.1016/J.BIOS.2018.02.047

  41. Sajid, M., Nazal, M.K., Mansha, M., Alsharaa, A., Jillani, S.M.S., Basheer C.: Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC Trends Anal. Chem. 76, 15–29 (2016). https://doi.org/10.1016/j.trac.2015.09.006

  42. Maleki, A., et al.: Amine functionalized multi-walled carbon nanotubes: single and binary systems for high capacity dye removal. Chem. Eng. J. 313, 826–835 (2017). https://doi.org/10.1016/j.cej.2016.10.058

    Article  Google Scholar 

  43. Maldonado, S., Morin, S., Stevenson, K.J.: Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44(8), 1429–1437 (2006). https://doi.org/10.1016/j.carbon.2005.11.027

  44. Kim, H., Lee, K., Woo, S.I., Jung, Y.: On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys. Chem. Chem. Phys. 13(39), 17505–17510 (2011). https://doi.org/10.1039/C1CP21665A

    Article  Google Scholar 

  45. Giombelli Rosenberger, A., et al.: Electrospinning in the preparation of an electrochemical sensor based on carbon nanotubes. J. Mol. Liq. 298, 112068 (2020). https://doi.org/10.1016/j.molliq.2019.112068

    Article  Google Scholar 

  46. Ji, H., Sun, H., Qu, X.: Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv. Drug Deliv. Rev. Part B 105, 176–189 (2016). https://doi.org/10.1016/j.addr.2016.04.009

  47. Kokulnathan, T., Chen, S.-M.: Robust and selective electrochemical detection of antibiotic residues: the case of integrated lutetium vanadate/graphene sheets architectures. J. Hazardous Mater. 384, 121304 (2020). https://doi.org/10.1016/j.jhazmat.2019.121304

  48. Dehdashtian, S., Behbahani, M., Noghrehabadi, A.: Fabrication of a novel, sensitive and selective electrochemical sensor for antibiotic cefotaxime based on sodium montmorillonite nonoclay/electroreduced graphene oxide composite modified carbon paste electrode. J. Electroanal. Chem. 801, 450–458 (2017). https://doi.org/10.1016/j.jelechem.2017.08.033

  49. Elfiky, M., Salahuddin, N., Hassanein, A., Matsuda, A., Hattori, T.: Detection of antibiotic Ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials. Microchem. J. 146, 170–177 (2019). https://doi.org/10.1016/j.microc.2018.12.034

  50. Aftab, S., et al.: NH2-fMWCNT-titanium dioxide nanocomposite based electrochemical sensor for the voltammetric assay of antibiotic drug nadifloxacin and its in vitro permeation study. J. Electroanal. Chem. 859, 113857 (2020). https://doi.org/10.1016/j.jelechem.2020.113857

  51. Ghanbari, M.H., Khoshroo, A., Sobati, H., Ganjali, M.R., Rahimi-Nasrabadi, M., Ahmadi, F.: An electrochemical sensor based on poly (l-Cysteine)@AuNPs @ reduced graphene oxide nanocomposite for determination of levofloxacin. Microchem. J. 147, 198–206 (2019). https://doi.org/10.1016/j.microc.2019.03.016

    Article  Google Scholar 

  52. BortolucciSimioni, N., Almeida Silva, T., Oliveira, G.G., Fatibello-Filho, O.: A nanodiamond-based electrochemical sensor for the determination of pyrazinamide antibiotic. Sens. Actuators B Chem. 250, 315–323 (2017). https://doi.org/10.1016/j.snb.2017.04.175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amra Bratovcic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bratovcic, A., Hikal, W.M., Ahl, H.A.H.SA. (2022). Electrochemical Sensors Based on Molecularly Imprinted Polymers and Different Carbon Materials for Antibiotics Detection. In: Karabegović, I., Kovačević, A., Mandžuka, S. (eds) New Technologies, Development and Application V. NT 2022. Lecture Notes in Networks and Systems, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-031-05230-9_95

Download citation

Publish with us

Policies and ethics