Skip to main content
  • 446 Accesses

Abstract

Cannabis sativa (hemp) as multifunctional crop have traditional application as fiber, food, paper, textile and pharmaceutical potential as inflorescences and seed as sources of exciting bioactive secondary metabolites. The Genus Cannabis is the only producer of phytocannabinoids. Extensive studied have been made to describe the origin history, geographical ranges and genetic identity of the Cannabis species but it remains obscured to date. Various high through put genetic marker have been studied to assess the genetic diversity in hemp varieties. Studies also indicated that domestication origin affects the genetic groups of hemp which further consequences on the chemical diversity of the cannabis. Chemotaxonomy using chemical markers also played a crucial role in differencing and allocating the Cannabis taxa. Cannabinoids ratio and terpene composition are the major marker to play an important role in studying chemical diversity of Cannabis sp. Cannabis genus is the only source of phytocannabinoids the dominant chemical class. Other than cannabinoids terpene and non-cannabinoid phenolic compounds also contribute in the chemical diversity of the species. The vast array of phytochemicals presents in the genus have potential application in pharmaceutical industries. However, due to its legalization status very limited study on its chemical and genetic diversity have been done. Therefore, the species needs attention to explore its commercial value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ameri A, Wilhelm A, Simmet T (1999) Effects of the endogeneous cannabinoid, anandamide, on neuronal activity in rat hippocampal slices. Br J Pharmacol 126(8):1831–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andre CM, Hausman JF, Guerriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 7:19

    Google Scholar 

  • Andre CM, Larondelle Y, Evers D (2010) Dietary antioxidants and oxidative stress from a human and plant perspective: a review. Curr Nutr Food Sci 6:2–12

    Article  CAS  Google Scholar 

  • Appendino G, Chianese G, Taglialatela-Scafati O (2011) Cannabinoids: occurrence and medicinal chemistry. Curr Med Chem 18(7):1085–1099

    Article  CAS  PubMed  Google Scholar 

  • Beutler JA, Der Marderosian AH (1978) Chemotaxonomy of Cannabis. L crossbreeding between Cannabis sativa and Cannabis ruderalis, with analysis of cannabinoid content. Econ Bot 32(4):287–394

    Google Scholar 

  • Borrelli F, Fasolino I, Romano B, Capasso R, Maiello F, Coppola D (2013) Beneficial effect of the non-psychotropic plant cannabinoid cannabigerolon experimental in flammatory bowel disease. Biochem Pharmacol 85:1306–1316

    Google Scholar 

  • Burstein S (2015) Cannabidiol (CBD) and its analogs: a review of their effects on inflammation. Bioorg Med Chem 23:1377–1385

    Google Scholar 

  • Callaway JC (2004) Hempseed as a nutritional resource: an overview. Euphytica 140(1):65–72

    Article  Google Scholar 

  • Carchman RA, Harris LS, Munson AE (1976) The inhibition of DNA synthesis by cannabinoids. Cancer Res 36(1):95–100

    CAS  PubMed  Google Scholar 

  • Chandra S, Lata H, Khan IA, ElSohly MA (2017) Cannabis sativa L.: botany and horticulture. In: Chandra S, Lata H, ElSohly M (eds) Cannabis sativa L.-Botany and Biotechnology Springer, Cham, pp 79–100

    Google Scholar 

  • Clarke R, Merlin M (2013) Introduction to the multipurpose plant Cannabis. In: Cannabis University of California Press, pp 1–12

    Google Scholar 

  • Clarke RC, Merlin MD (2016) Cannabis Taxonomy: the ‘sativa’ vs ‘indica’ Debate. Herbal Gram 110:44–49

    Google Scholar 

  • Clarke RC, Watson DP (2002) Botany of natural Cannabis medicines. In: Grotenhermen F, Russo E (eds) Cannabis and cannabinoids: pharmacology, toxicology and therapeutic potential, The Haworth Integrative Healing Press, pp 3–13

    Google Scholar 

  • Cleemput MV, Cattoor K, Bosscher KD, Haegeman G, Keukeleire DD, Heyerick A (2009) Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J Nat Prod 72:1220–1230

    Article  PubMed  CAS  Google Scholar 

  • Conneely LJ, Mauleon R, Mieog J, Barkla BJ, Kretzschmar T (2021) Characterization of the Cannabis sativa glandular trichome proteome. PLoS ONE 16(4):e0242633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui-Ying M, Wing Keung L, Chun-Tao C (2002) Lignanamides and nonalkaloidal components of Hyoscyamus niger seeds. J Nat Prod 65:206–209

    Article  CAS  Google Scholar 

  • Datwyler SL, Weiblen GD (2006) Genetic variation in hemp and marijuana (Cannabis sativa L.) according to amplified fragment length polymorphisms. J Forensic Sci 51(2):371–375

    Google Scholar 

  • Davis WM, Hatoum NS (1983) Neuro behavioral actions of cannabichromene and interactions with delta 9-tetrahydrocannabinol. Gen Pharmacol Vasc Sys 14:247–252

    Article  CAS  Google Scholar 

  • De Backer B, Debrus B, Lebrun P, Theunis L, Dubois N, Decock L et al (2009) Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in cannabis plant material. J Chromatogr B 877(32):4115–4124

    Article  CAS  Google Scholar 

  • de Meijer E (2004) The breeding of cannabis cultivars for pharmaceutical end uses. Medicinal uses of Cannabis and Cannabinoids. Pharm Press, London, pp 55–70

    Google Scholar 

  • De Meijer EP, Bagatta M, Carboni A, Crucitti P, Moliterni VC, Ranalli P et al (2003) The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163(1):335–346

    Article  PubMed  PubMed Central  Google Scholar 

  • de Meijer EPM (1995) Fibre hemp cultivars: a survey of origin, ancestry, availability and brief agronomic characteristics. J Int Hemp 2(2):66–73

    Google Scholar 

  • De Petrocellis L, Ligresti A, Moriello AS, Allarà M, Bisogno T, Petrosino S (2011) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163:1479–1494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeLong GT, Wolf CE, Poklis A, Lichtman AH (2010) Pharmacological evaluation of the natural constituent of Cannabis sativa, cannabichromene and its modulation by _9-tetrahydrocannabinol. Drug Alcohol Depend 112:126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufresnes C, Jan C, Bienert F, Goudet J, Fumagalli L (2017) Broad-scale genetic diversity of Cannabis for forensic applications. PLoS ONE 12(1):e0170522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eisohly HN, Turner CE, Clark AM, Eisohly MA (1982) Synthesis and antimicrobial activities of certain cannabichromene and cannabigerol related compounds. J Pharm Sci 71:1319–1323

    Article  CAS  PubMed  Google Scholar 

  • ElSohly MA, Radwan MM, Gul W, Chandra S, Galal A (2017) Phytochemistry of Cannabis sativa L. Phytocannabinoids 1–36

    Google Scholar 

  • ElSohly MA, Slade, D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78(5):539–548

    Google Scholar 

  • Elzinga S, Fischedick J, Podkolinski R, Raber JC (2015) Cannabinoids and terpenes as chemotaxonomic markers in cannabis. Nat Prod Chem Res 3(81):10–4172

    Google Scholar 

  • Faeti V, Mandolino G, Ranalli P (1996) Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breed 115(5):367–370

    Article  Google Scholar 

  • Farag S, Kayser O (2017) The Cannabis plant: botanical aspects. In: Handbook of Cannabis and Related Pathologies Academic Press, pp 3–12

    Google Scholar 

  • Faux AM, Draye X, Flamand MC, Occre A, Bertin P (2016) Identification of QTLs for sex expression in dioecious and monoecious hemp (Cannabis sativa L.). Euphytica 209(2):357–376

    Google Scholar 

  • Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R (2010) Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 71(17–18):2058–2073

    Google Scholar 

  • Flemming T, Muntendam R, Steup C, Kayser O (2007) Chemistry and biological activity of tetrahydrocannabinol and its derivatives. In: Bioactive Heterocycles IV. Springer, Berlin, Heidelberg, pp 1–42

    Google Scholar 

  • Galal AM, Slade D, Gul W, El-Alfy AT, Ferreira D, ElSohly MA (2009) Naturally occurring and related synthetic cannabinoids and their potential therapeutic applications. Recent Pat CNS Drug Discov 4:112

    Article  CAS  PubMed  Google Scholar 

  • Gautam AK, Kant M, Thakur Y (2013) Isolation of endophytic fungi from Cannabis sativa and study their antifungal potential. Arch Phytopathol Pflanzenschutz 46(6):627–635

    Article  Google Scholar 

  • Gilmore S, Peakall R, Robertson J (2007) Organelle DNA haplotypes reflect crop-use characteristics and geographic origins of Cannabis sativa. Forensic Sci Int (2–3):179–190

    Google Scholar 

  • Glanzman A (2015). Discover Himalaya’s Outlawed Marijuana fields. Time. http://time.com/3736616/discover-himalayas-illegal-marijuana-fields/. Accessed 24 Nov 2021

  • Gomes A, Fernandes E, Lima JL, Mira L, Corvo ML (2008) Molecular mechanisms of anti-inflammatory activity mediated by flavonoids. Curr Med Chem 15(16):1586–1605

    Google Scholar 

  • Grassa CJ, Weiblen GD, Wenger JP, Dabney C, Poplawski SG, Timothy Motley S et al (2021) A new Cannabis genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana. New Phyto 230(4):1665–1679

    Article  CAS  Google Scholar 

  • Hakki EE, Kayis SA, Pinarkara E, Sag A (2007) Inter simple sequence repeats separate efficiently hemp from marijuana (Cannabis sativa L.). Electro J Biotechnol 10(4):570–581

    Google Scholar 

  • HanuÅ¡ LO, Meyer SM, Muñoz E, Taglialatela-Scafati O, Appendino G (2016) Phytocannabinoids: a unified critical inventory. Nat Prod Rep 33(12):1357–1392

    Google Scholar 

  • Hazekamp A, Fischedick JT (2012) Cannabis—from cultivar to chemovar. Drug Test Anal (Nov 2011):660–667

    Google Scholar 

  • Hazekamp A, Tejkalová K, Papadimitriou S (2016) Cannabis: from cultivar to chemovar II—a metabolomics approach to Cannabis classification. Cannabis Cannabinoid Res 1(1):202–215

    Article  CAS  Google Scholar 

  • Henry P, Khatodia S, Kapoor K, Gonzales B, Middleton A, Hong K et al (2020) A single nucleotide polymorphism assay sheds light on the extent and distribution of genetic diversity, population structure and functional basis of key traits in cultivated north American Cannabis. J Cannabis Res 2(1):1–11

    Article  Google Scholar 

  • Hillig KW (2005) Genetic evidence for speciation in Cannabis (Cannabaceae). Genet Resour Crop Evol 52(2):161–180

    Article  CAS  Google Scholar 

  • Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot 91(6):966–975

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann W (1961) Hanf, Cannabis sativa. In: Kappert H, Rudorf W(Eds.) Handbuch der Pflanzenzüchtung, Band V. Paul Parey, Berlin-Hamburg, pp 204–261

    Google Scholar 

  • Hu ZG, Guo HY, Hu XL, Chen X, Liu XY et al (2012) Genetic diversity research of hemp (Cannabis sativa L) cultivar based on AFLP analysis. J Plant Genet Resour 13(4):555–561

    CAS  Google Scholar 

  • Jenkins C, Orsburn B (2020) The Cannabis Proteome draft map project. Int J Mol Sci 21:965

    Article  CAS  PubMed Central  Google Scholar 

  • Jin D, Henry P, Shan J, Chen J (2021) Identification of chemotypic markers in three chemotype categories of cannabis using secondary metabolites profiled in inflorescences, leaves, stem bark, and roots. Front Plant Sci 12

    Google Scholar 

  • Johnson MS, Wallace JG (2021) Genomic and chemical diversity of commercially available industrial hemp accessions. bioRxiv

    Google Scholar 

  • Komori T, Fujiwara R, Tanida M, Nomura J, Yokoyama MM (1995) Effects of citrus fragrance on immune function and depressive states. Neuroimmunology 2:174–180

    CAS  Google Scholar 

  • Kumar S, Singh R, Chandra V, Rani A, Jain R (2017) Cannabis sativa: a plant suitable for phytoremediation and bioenergy production. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 269–285

    Chapter  Google Scholar 

  • Laverty KU, Stout JM, Sullivan MJ, Shah H, Gill N, Holbrook L, Deikus G, Sebra R, Hughes TR, Page JE, Van Bakel H (2019) A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome res 29(1):146–156

    Google Scholar 

  • Lynch RC, Vergara D, Tittes S, White K, Schwartz CJ, Gibbs MJ et al (2016) Genomic and chemical diversity in Cannabis. Crit Rev Plant Sci 35(5–6):349–363

    Article  Google Scholar 

  • Mechoulam R (2005) Plant cannabinoids: a neglected pharmacological treasure trove. Br J Pharmacol 146(7):913–915

    Google Scholar 

  • Moses T, Pollier J, Thevelein JM, Goossens A (2013) Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol 200:27–43

    Article  CAS  PubMed  Google Scholar 

  • Pavlovic R, Panseri S, Giupponi L, Leoni V, Citti C, et al (2019) Phytochemical and ecological analysis of two varieties of hemp (Cannabis sativa L.) grown in a mountain environment of Italian Alps. Front Plant Sci 10:1265

    Google Scholar 

  • Pellati F, Borgonetti V, Brighenti V, Biagi M, Benvenuti S, Corsi L (2018) Cannabis sativa L. and nonpsychoactive cannabinoids: their chemistry and role against oxidative stress, inflammation, and cancer. Biomed Res Int. 1–15

    Google Scholar 

  • Punja ZK, Rodriguez G, Chen S (2017) Assessing genetic diversity in Cannabis sativa using molecular approaches. In: Cannabis sativa L.-Botany and biotechnology. Springer, Cham, pp 395–418

    Google Scholar 

  • Radwan MM, Chandra S, Gul S, ElSohly MA (2021) Cannabinoids, phenolics, terpenes and alkaloids of Cannabis. Molecules 26(9):2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radwan MM, Ross SA, Slade D, Ahmed SA, Zulfiqar F, ElSohly MA (2008) Isolation and characterization of new Cannabis constituents from a high potency variety. Planta Med 74(03):267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo EB (2011) Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 163(7):1344–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo EB, Jiang HE, Li X, Sutton A, Carboni A, Del Bianco F et al (2008) Phytochemical and genetic analyses of ancient cannabis from Central Asia. J Exp Bot 59(15):4171–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto K, Akiyama Y, Fukui K, Kamada H, Satoh S (1998) Characterization; genome sizes and morphology of sex chromosomes in hemp (Cannabis sativa L.). Cytologia 63(4):459–464

    Google Scholar 

  • Sawler J, Stout JM, Gardner KM, Hudson D, Vidmar J, Butler L et al (2015) The genetic structure of marijuana and hemp. PLoS ONE 10(8):0133292

    Article  CAS  Google Scholar 

  • Schultes RE, Klein WM, Plowman T, Lockwood TE (1974) Cannabis: an example of taxonomic neglect. Harvard Univ Bot Mus Leafl 23:337–367

    Google Scholar 

  • Schwabe AL, Mc Glaughlin ME (2019) Genetic tools weed out misconceptions of strain reliability in Cannabis sativa: implications for a budding industry. J Cannabis Res 1(1):1–16

    Article  Google Scholar 

  • Shoyama Y, Kuboe K, Nishioka I, Yamauchi T (1972) Cannabidiol monomethyl ether. A new neutral cannabinoid. Chem Pharm Bull 20: 2072

    Google Scholar 

  • Singh B, Sharma R (2015) Plantterpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotechnol 5:129–151

    Google Scholar 

  • Sirikantaramas S, Taura F, Morimoto S, Shoyama Y (2007) Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr Pharm Biotechnol 8:237

    Article  CAS  PubMed  Google Scholar 

  • Small E (2015) Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. Bot Rev 81(3):189–294

    Article  Google Scholar 

  • Small E (1979a) The species problem in Cannabis: science and semantics. vol 1: science. Corpus, Toronto

    Google Scholar 

  • Small E, Beckstead HD (1973) Common cannabinoid phenotypes in 350 stocks of Cannabis. Lloydia 36:144–165

    CAS  PubMed  Google Scholar 

  • Small E, Beckstead HD, Chan A (1975) The evolution of cannabinoid phenotypes in Cannabis. Econ Bot 219–232

    Google Scholar 

  • Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 405–435

    Google Scholar 

  • Soorni A, Fatahi R, Haak DC, Salami SA, Bombarely A (2017) Assessment of genetic diversity and population structure in Iranian cannabis germplasm. Sci Rep 7(1):1–10

    Google Scholar 

  • Sun J, Gu YF, Su XQ, Li MM, Huo HX, Zhang J et al (2014) Anti-inflammatory lignanamides from the roots of Solanum melongena L. Fitoterapia 98:110–116

    Article  CAS  PubMed  Google Scholar 

  • van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR et al (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:R102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Broeck HC, Maliepaard C, Ebskamp MJM, Toonen MAJ, Koops AJ (2008) Differential expression of genes involved in C1 metabolism and lignin biosynthesis in wooden core and bast tissues of fibre hemp (Cannabis sativa L.). Plant Sci 174:205–220

    Article  CAS  Google Scholar 

  • Vázquez LH, Palazon J, Navarro-Ocaña A (2012) The pentacyclic triterpenes α-, β-amyrins: a review of sources and biological activities. Phytochemicals 23:487–502

    Google Scholar 

  • Vergara D, Feathers C, Huscher EL, Holmes B, Haas JA, Kane NC (2021) Widely assumed phenotypic associations in Cannabis sativa lack a shared genetic basis. PeerJ 9, p.e10672

    Google Scholar 

  • Wang C, Kurzer MS (1998) Effects of phytoestrogens on DNA synthesis in MCF-7 cells in the presence of estradiol or growth factors. Nut Cancer 31:90–100

    Article  CAS  Google Scholar 

  • Weiblen GD, Wenger JP, Craft KJ, ElSohly MA, Mehmedic Z, Treiber EL et al (2015) Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol 208:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Werz O, Seegers J, Schaible AM, Weinigel C, Barz D, Koeberle A, Allegrone G, Pollastro F, Zampieri L, Grassi G, Appendino G (2014) Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. PharmaNutrition 2(3):53–60

    Google Scholar 

  • Zhang J, Yan J, Huang S, Pan G, Chang L, Li J, et al (2020) Genetic diversity and population structure of cannabis based on the genome-wide development of simple sequence repeat markers. Front Genet 11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mithilesh Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, V., Dasila, K., Singh, M., Tripathi, D. (2022). Hemp Varieties: Genetic and Chemical Diversity. In: Belwal, T., Belwal, N.C. (eds) Revolutionizing the Potential of Hemp and Its Products in Changing the Global Economy. Springer, Cham. https://doi.org/10.1007/978-3-031-05144-9_2

Download citation

Publish with us

Policies and ethics